**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30848

##### Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming

**Authors:**
N. Kumaresan,
J. Kavikumar,
M. Kumudthaa,
Kuru Ratnavelu

**Abstract:**

**Keywords:**
Fuzzy differential equation,
Generalized differentiability,
Genetic programming and H-difference

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1074853

**References:**

[1] M. F. Abbod, D. G. Von Keyserlingk, D. A. Linkens,M. Mahfouf, Survey of utilisation of fuzzy technology in medicine and healthcare, Fuzzy Sets and Systems, 120 (2001), 331-349.

[2] S. Abbasbandy, J. J. Nieto, M. Alavi, Tuning of reachable set in one dimensional fuzzy differential inclusions, Chaos, Solitons & Fractals, 26 (2005), 1337-1341.

[3] S. Barro, R. Mar'─▒n, Fuzzy logic in medicine, Heidelberg: Physica-Verlag, 2002.

[4] B. Bede, S. G. Gal, Almost periodic fuzzy number valued functions, Fuzzy Sets and Systems, 147 (2004), 385-403.

[5] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599.

[6] B. Bede, I. J. Rudas, A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inform. Sciences, 177 (2007), 1648-1662.

[7] Y. Chalco-Cano, H. Rom'an-Flores, On new solutions of fuzzy differential equations, Chaos, Solitons & Fractals, 38 (2008), 112-119.

[8] D. P. Datta, The Golden mean, scale free extension of real number system, fuzzy sets and 1/f spectrum in physics and biology, Chaos, Solitons & Fractals, 17 (2003), 781-788.

[9] P. Diamond, Brief note on the variation of constants formula for fuzzy differential equations, Fuzzy Sets and Systems, 129 (2002), 65-71.

[10] M. S. El Naschie, From experimental quantum optics to quantum gravity via a fuzzy K┬¿ahler manifold, Chaos, Solitons & Fractals, 25 (2005), 969- 977.

[11] T. Gnana Bhaskar, V. Lakshmikantham, V. Devi, Revisiting fuzzy differential equations, Nonlinear Analysis, 58 (2004), 351-358.

[12] D. E. Goldberg, Genetic algorithms in search, Optimization and Machine Learning, Addision Wesley, 1989.

[13] M. Guo, X. Xue, R. Li, The oscillation of delay differential inclusions and fuzzy biodynamics models, Math. Comput. Model., 37 (2003), 651- 658.

[14] M. Guo, R. Li, Impulsive functional differential inclusions and fuzzy population models, Fuzzy Sets and Systems, 138 (2003), 601-615.

[15] M. Hanss, Applied fuzzy arithmetic: An introduction with engineering applications, Springer Verlag, Berlin, 2005.

[16] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.

[17] O. Kaleva, A note on fuzzy differential equations, Nonlinear Analysis, 64 (2006), 895-900.

[18] J. R. Koza, F.H. Bennett D. Andre, M.A. Keane, Genetic Programming III:Darwinian Invention and Problem Solving. Morgan Kaufmann, 1999.

[19] J. R. Koza, Genetic Programming: On the programming of Computer by means of Natural Selection. MIT Press: Cambridge, MA, 1992.

[20] B. Mckay, M. Wills G. Barton, Steady-state modelling of chemical process systems using genetic programming, Comput. Chem. Eng., 1 (1997), 981-996.

[21] D.J. Monana, S. Czerwinski, Evolving Control Laws for a Network of Traffic Signals-. genetic programming, Proceedings of the First International Conference, Stanford University, California (1996), 333-338.

[22] J. J. Nieto, R. Rodr'─▒guez-L'opez, Bounded solutions for fuzzy differential and integral equations, Chaos, Solitons & Fractals, 27 (2006), 1376- 1386.

[23] M. O-Neill, C. Ryan, Grammatical Evoulation, IEEE Trans. Evol. Comput., 5 (2001), 349-358 .

[24] M. O-Neill, C. Ryan Grammatical Evolution: Evolutionary Automatic programming in an Arbitaty Language, volume 4 of Genetic Programming, Kluwer Academic Publishers, 2003.

[25] M. Puri, D. Ralescu, Differential and fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552-558.

[26] K. C Sharman, A. I. Esparcia Alcazar, Y. Li, Evolving Signal Processing Algorithms by Genetic Programming, Proceeding of the Third Annual Conference, (1998), 359-364.

[27] D. Searson, M.Wills, G. Montague, Chemical Process Controller Design Using Genetic Programming, IEEE Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, (1995), 473-480.

[28] S. Song, Lei Guo, Chumbo Feng, Global existence of solutions to fuzzy differential equations, Fuzzy Sets and Systems, 115 (2000), 371-376.

[29] S. Song, C. Wu, Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations, Fuzzy Sets and Systems, 110 (2000), 55-67.

[30] I. G.Tsoulos, I. E.Lagaris, Solving differential equations with genetic programming, Genet. Program Evolvable Mach, 7 (2006), 33-54.

[31] A. Vincent Antony Kumar, P. Balasubramaniam, Optimal control for linear singular system using genetic programming, Appl. Math. Comput., 192 (2007), 78-89.

[32] C. X. Wu, S. Song, Stanley Lee, Approximate solutions, existence and uniqueness of the Cauchy problem of fuzzy differential equations, J. Math. Anal. Appl., 202 (1996), 629-644.

[33] C. X. Wu, S. Song, Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions, Inform. Sciences, 108 (1998), 123-134.

[34] H. Zhang, X. Liao, J. Yu, Fuzzy modeling and synchronization of hyperchaotic systems, Chaos, Solitons & Fractals, 26 (2005), 835-843.