**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**1663

# Search results for: characteristic equation.

##### 1663 Method of Finding Aerodynamic Characteristic Equations of Missile for Trajectory Simulation

**Authors:**
Attapon Charoenpon,
Ekkarach Pankeaw

**Abstract:**

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (╬¢ ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ╬¢ <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

**Keywords:**
Aerodynamic,
Characteristic Equation,
Angle ofAttack,
Polynomial interpolation,
Trajectories

##### 1662 The Adsorption of SDS on Ferro-Precipitates

**Authors:**
R.Marsalek

**Abstract:**

**Keywords:**
ferro-precipitate,
adsorption,
SDS,
zeta potential

##### 1661 Stability Analysis of Linear Fractional Order Neutral System with Multiple Delays by Algebraic Approach

**Authors:**
Lianglin Xiong,
Yun Zhao,
Tao Jiang

**Abstract:**

In this paper, we study the stability of n-dimensional linear fractional neutral differential equation with time delays. By using the Laplace transform, we introduce a characteristic equation for the above system with multiple time delays. We discover that if all roots of the characteristic equation have negative parts, then the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the equilibrium exist that is almost the same as that of classical differential equations. An example is provided to show the effectiveness of the approach presented in this paper.

**Keywords:**
Fractional neutral differential equation,
Laplace transform,
characteristic equation.

##### 1660 Stability Analysis in a Fractional Order Delayed Predator-Prey Model

**Authors:**
Changjin Xu,
Peiluan Li

**Abstract:**

In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.

**Keywords:**
Fractional predator-prey model,
laplace transform,
characteristic equation.

##### 1659 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays

**Authors:**
Felix Che Shu

**Abstract:**

We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.

**Keywords:**
Delay Differential Equation,
Explicit Solution,
Exponential
Stability,
Lyapunov Exponents,
Multiple Delays.

##### 1658 A Convenient Model for I-V Characteristic of a Solar Cell Generator as an Active Two-Pole with Self-Limitation of Current

**Authors:**
A. A. Penin,
A. S. Sidorenko

**Abstract:**

A convenient and physically sound mathematical model of the external or I - V characteristic of solar cells generators is presented in this paper. This model is compared with the traditional model of p-n junction. The direct analytical calculation of load regime leads to a quadratic equation, which is importantly to simplify the calculations in the real time.

**Keywords:**
A solar cell generator,
I−V characteristic,
activetwo-pole.

##### 1657 Numerical Solution of Manning's Equation in Rectangular Channels

**Authors:**
Abdulrahman Abdulrahman

**Abstract:**

**Keywords:**
Channel design,
civil engineering,
hydraulic engineering,
open channel flow,
Manning's equation,
normal depth,
uniform flow.

##### 1656 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

**Authors:**
Ahmet Tekcan,
Betül Gezer,
Osman Bizim

**Abstract:**

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

**Keywords:**
Pell equation,
Diophantine equation.

##### 1655 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4

**Authors:**
Armend Sh. Shabani

**Abstract:**

**Keywords:**
Pell's equation,
solutions of Pell's equation.

##### 1654 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term

**Authors:**
Jaipong Kasemsuwan

**Abstract:**

**Keywords:**
Finite-difference method,
the nonlinear damped
equation,
the numerical simulation,
the suspended string equation

##### 1653 An Empirical Validation of the Linear- Hyperbolic Approximation of the I-V Characteristic of a Solar Cell Generator

**Authors:**
A. A. Penin

**Abstract:**

An empirical linearly-hyperbolic approximation of the I - V characteristic of a solar cell is presented. This approximation is based on hyperbolic dependence of a current of p-n junctions on voltage for large currents. Such empirical approximation is compared with the early proposed formal linearly-hyperbolic approximation of a solar cell. The expressions defining laws of change of parameters of formal approximation at change of a photo current of family of characteristics are received. It allows simplifying a finding of parameters of approximation on actual curves, to specify their values. Analytical calculation of load regime for linearly - hyperbolic model leads to quadratic equation. Also, this model allows to define soundly a deviation from the maximum power regime and to compare efficiency of regimes of solar cells with different parameters.

**Keywords:**
a solar cell generator,
I − V characteristic,
p − n junction,
approximation

##### 1652 Investigation of Stoneley Waves in Multilayered Plates

**Authors:**
Bing Li,
Tong Lu,
Lei Qiang

**Abstract:**

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in *n*th layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

**Keywords:**
Characteristic equation,
interface waves,
dispersion curves,
potential function,
Stoneley waves,
wave structures.

##### 1651 Stability Analysis of Fractional Order Systems with Time Delay

**Authors:**
Hong Li,
Shou-Ming Zhong,
Hou-Biao Li

**Abstract:**

In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.

**Keywords:**
Fractional order systems,
Time delay,
Characteristic equation.

##### 1650 An Analytical Method for Solving General Riccati Equation

**Authors:**
Y. Pala,
M. O. Ertas

**Abstract:**

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

**Keywords:**
Riccati Equation,
ordinary differential equation,
nonlinear differential equation,
analytical solution,
proper solution.

##### 1649 The Pell Equation x2 − Py2 = Q

**Authors:**
Ahmet Tekcan,
Arzu Özkoç,
Canan Kocapınar,
Hatice Alkan

**Abstract:**

**Keywords:**
Pell equation,
solutions of Pell equation.

##### 1648 An Analytical Study of Small Unmanned Arial Vehicle Dynamic Stability Characteristics

**Authors:**
Abdelhakam A. Noreldien,
Sakhr B. Abudarag,
Muslim S. Eltoum,
Salih O. Osman

**Abstract:**

This paper presents an analytical study of Small Unmanned Aerial Vehicle (SUAV) dynamic stability derivatives. Simulating SUAV dynamics and analyzing its behavior at the earliest design stages is too important and more efficient design aspect. The approach suggested in this paper is using the wind tunnel experiment to collect the aerodynamic data and get the dynamic stability derivatives. AutoCAD Software was used to draw the case study (wildlife surveillance SUAV). The SUAV is scaled down to be 0.25% of the real SUAV dimensions and converted to a wind tunnel model. The model was tested in three different speeds for three different attitudes which are; pitch, roll and yaw. The wind tunnel results were then used to determine the case study stability derivative values, and hence it used to calculate the roots of the characteristic equation for both longitudinal and lateral motions. Finally, the characteristic equation roots were found and discussed in all possible cases.

**Keywords:**
Model,
simulating,
SUAV,
wind tunnel.

##### 1647 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

**Authors:**
Ahmet Tekcan,
Arzu Özkoç,
Hatice Alkan

**Abstract:**

**Keywords:**
Diophantine equation,
Pell equation,
quadratic form.

##### 1646 Solution of The KdV Equation with Asymptotic Degeneracy

**Authors:**
Tapas Kumar Sinha,
Joseph Mathew

**Abstract:**

Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).

**Keywords:**
KdV equation,
Asymptotic Degeneracy,
Solitons,
Inverse Scattering

##### 1645 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method

**Authors:**
Said Laachir,
Aziz Laaribi

**Abstract:**

The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.

**Keywords:**
Helmholtz equation,
Nikiforov-Uvarov method,
exact solutions,
eigenfunctions.

##### 1644 Study of Cahn-Hilliard Equation to Simulate Phase Separation

**Authors:**
Nara Guimarães,
Marcelo Aquino Martorano,
Douglas Gouvêa

**Abstract:**

An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.

**Keywords:**
Cahn-Hilliard equation,
miscibility gap,
phase
separation.

##### 1643 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model

**Authors:**
Hidetoshi Konno,
Akio Suzuki

**Abstract:**

The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.

**Keywords:**
Transient population dynamics,
Phase singularity,
Birth-death process,
Non-stationary Master equation,
nonlinear Langevin equation,
generalized Logistic equation.

##### 1642 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method

**Authors:**
Nisha Goyal,
R.K. Gupta

**Abstract:**

This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.

**Keywords:**
Sawada-Kotera-Kadomtsev-Petviashivili equation,
Bogoyavlensky-Konoplechenko equation,

##### 1641 Characteristic Function in Estimation of Probability Distribution Moments

**Authors:**
Vladimir S. Timofeev

**Abstract:**

In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.

**Keywords:**
Characteristic function,
distributional moments,
robustness,
outlier,
statistical estimation problem,
statistical simulation.

##### 1640 Stability of Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

**Keywords:**
Fractional calculus,
fractional differential equation,
Lane-Emden equation,
Riemann-Liouville fractional operators,
Volterra integral equation.

##### 1639 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

**Authors:**
Anjali Verma,
Ram Jiwari,
Jitender Kumar

**Abstract:**

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

**Keywords:**
Shallow water wave equation,
Exact solutions,
(G'/G) expansion method.

##### 1638 Existence of Iterative Cauchy Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

**Keywords:**
Fractional calculus,
fractional differential equation,
Cauchy equation,
Riemann-Liouville fractional operators,
Volterra
integral equation,
non-expansive mapping,
iterative differential equation.

##### 1637 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building

**Authors:**
Tarek M. Alguhane,
Ayman H. Khalil,
M. N. Fayed,
Ayman M. Ismail

**Abstract:**

This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.

**Keywords:**
Masonry infill,
framed structures,
RC buildings,
non-structural elements.

##### 1636 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers

**Authors:**
Irina Eglite,
Andrei A. Kolyshkin

**Abstract:**

**Keywords:**
Shallow water equations,
mixing layer,
weakly
nonlinear analysis,
Ginzburg-Landau equation

##### 1635 Surface Flattening based on Linear-Elastic Finite Element Method

**Authors:**
Wen-liang Chen,
Peng Wei,
Yidong Bao

**Abstract:**

This paper presents a linear-elastic finite element method based flattening algorithm for three dimensional triangular surfaces. First, an intrinsic characteristic preserving method is used to obtain the initial developing graph, which preserves the angles and length ratios between two adjacent edges. Then, an iterative equation is established based on linear-elastic finite element method and the flattening result with an equilibrium state of internal force is obtained by solving this iterative equation. The results show that complex surfaces can be dealt with this proposed method, which is an efficient tool for the applications in computer aided design, such as mould design.

**Keywords:**
Triangular mesh,
surface flattening,
finite elementmethod,
linear-elastic deformation.

##### 1634 Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

**Authors:**
Mohammad Taghi Darvishi,
Maliheh Najafi,
Mohammad Najafi

**Abstract:**

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

**Keywords:**
Exact solution,
The (3+1)-dimensional breaking soliton equation,
( G G )-expansion method,
Riccati equation,
Modified Fexpansion method.