Search results for: Mean Squared Error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1275

Search results for: Mean Squared Error

1125 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) of English and machine translation (MT) for English and Croatian and Croatian-English language pairs in the domain of business correspondence. The first part presents results of training the ASR commercial system on English data sets, enriched by error analysis. The second part presents results of machine translation performed by free online tool for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: Automatic machine translation, integrated language technologies, quality evaluation, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863
1124 High Accuracy Eigensolutions in Elasticity for Boundary Integral Equations by Nyström Method

Authors: Pan Cheng, Jin Huang, Guang Zeng

Abstract:

Elastic boundary eigensolution problems are converted into boundary integral equations by potential theory. The kernels of the boundary integral equations have both the logarithmic and Hilbert singularity simultaneously. We present the mechanical quadrature methods for solving eigensolutions of the boundary integral equations by dealing with two kinds of singularities at the same time. The methods possess high accuracy O(h3) and low computing complexity. The convergence and stability are proved based on Anselone-s collective compact theory. Bases on the asymptotic error expansion with odd powers, we can greatly improve the accuracy of the approximation, and also derive a posteriori error estimate which can be used for constructing self-adaptive algorithms. The efficiency of the algorithms are illustrated by numerical examples.

Keywords: boundary integral equation, extrapolation algorithm, aposteriori error estimate, elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603
1123 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error

Authors: Oscar Javier Herrera, Manuel Ángel Camacho

Abstract:

This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors.’ The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.

Keywords: Demand Forecasting, Empirical Distribution, Propagation of Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
1122 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification

Authors: Ishapathik Das

Abstract:

The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.

Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
1121 Improvement over DV-Hop Localization Algorithm for Wireless Sensor Networks

Authors: Shrawan Kumar, D. K. Lobiyal

Abstract:

In this paper, we propose improved versions of DVHop algorithm as QDV-Hop algorithm and UDV-Hop algorithm for better localization without the need for additional range measurement hardware. The proposed algorithm focuses on third step of DV-Hop, first error terms from estimated distances between unknown node and anchor nodes is separated and then minimized. In the QDV-Hop algorithm, quadratic programming is used to minimize the error to obtain better localization. However, quadratic programming requires a special optimization tool box that increases computational complexity. On the other hand, UDV-Hop algorithm achieves localization accuracy similar to that of QDV-Hop by solving unconstrained optimization problem that results in solving a system of linear equations without much increase in computational complexity. Simulation results show that the performance of our proposed schemes (QDV-Hop and UDV-Hop) is superior to DV-Hop and DV-Hop based algorithms in all considered scenarios.

Keywords: Wireless sensor networks, Error term, DV-Hop algorithm, Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1120 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.

Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4854
1119 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation

Authors: Xin Luo, Jin Huang, Chuan-Long Wang

Abstract:

The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.

Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1118 The Error Analysis of An Upwind Difference Approximation for a Singularly Perturbed Problem

Authors: Jiming Yang

Abstract:

An upwind difference approximation is used for a singularly perturbed problem in material science. Based on the discrete Green-s function theory, the error estimate in maximum norm is achieved, which is first-order uniformly convergent with respect to the perturbation parameter. The numerical experimental result is verified the valid of the theoretical analysis.

Keywords: Singularly perturbed, upwind difference, uniform convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
1117 A Study of RSCMAC Enhanced GPS Dynamic Positioning

Authors: Ching-Tsan Chiang, Sheng-Jie Yang, Jing-Kai Huang

Abstract:

The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.

Keywords: Dynamic Error, GPS, Prediction, RSCMAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1116 Recursive Least Squares Adaptive Filter a better ISI Compensator

Authors: O. P. Sharma, V. Janyani, S. Sancheti

Abstract:

Inter-symbol interference if not taken care off may cause severe error at the receiver and the detection of signal becomes difficult. An adaptive equalizer employing Recursive Least Squares algorithm can be a good compensation for the ISI problem. In this paper performance of communication link in presence of Least Mean Square and Recursive Least Squares equalizer algorithm is analyzed. A Model of communication system having Quadrature amplitude modulation and Rician fading channel is implemented using MATLAB communication block set. Bit error rate and number of errors is evaluated for RLS and LMS equalizer algorithm, due to change in Signal to Noise Ratio (SNR) and fading component gain in Rician fading Channel.

Keywords: Least mean square (LMS), Recursive least squares(RLS), Adaptive equalization, Bit error rate (BER), Rician fading channel, Quadrature Amplitude Modulation (QAM), Signal to noiseratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3026
1115 Hybrid Modeling Algorithm for Continuous Tamil Speech Recognition

Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi

Abstract:

In this paper, Fuzzy C-Means clustering with Expectation Maximization-Gaussian Mixture Model based hybrid modeling algorithm is proposed for Continuous Tamil Speech Recognition. The speech sentences from various speakers are used for training and testing phase and objective measures are between the proposed and existing Continuous Speech Recognition algorithms. From the simulated results, it is observed that the proposed algorithm improves the recognition accuracy and F-measure up to 3% as compared to that of the existing algorithms for the speech signal from various speakers. In addition, it reduces the Word Error Rate, Error Rate and Error up to 4% as compared to that of the existing algorithms. In all aspects, the proposed hybrid modeling for Tamil speech recognition provides the significant improvements for speechto- text conversion in various applications.

Keywords: Speech Segmentation, Feature Extraction, Clustering, HMM, EM-GMM, CSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
1114 Performance Evaluation of Cooperative Diversity in Flat Fading Channel with Error Control Coding

Authors: Oluseye Adeniyi Adeleke, Mohd Fadzli Salleh

Abstract:

Cooperative communication provides transmit diversity, even when, due to size constraints, mobile units cannot accommodate multiple antennas. A versatile cooperation method called coded cooperation has been developed, in which cooperation is implemented through channel coding with a view to controlling the errors inherent in wireless communication. In this work we evaluate the performance of coded cooperation in flat Rayleigh fading environment using a concept known as the pair wise error probability (PEP). We derive the PEP for a flat fading scenario in coded cooperation and then compare with the signal-to-noise ratio of the users in the network. Results show that an increase in the SNR leads to a decrease in the PEP. We also carried out simulations to validate the result.

Keywords: Channel state information, coded cooperation, cooperative systems, pairwise-error-probability, Reed-Solomon codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
1113 Knowledge Required for Avoiding Lexical Errors at Machine Translation

Authors: Yukiko Sasaki Alam

Abstract:

This research aims at finding out the causes that led to wrong lexical selections in machine translation (MT) rather than categorizing lexical errors, which has been a main practice in error analysis. By manually examining and analyzing lexical errors outputted by a MT system, it suggests what knowledge would help the system reduce lexical errors.

Keywords: Error analysis, causes of errors, machine translation, outputs evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1112 A Selective 3-Anchor DV-Hop Algorithm Based On the Nearest Anchor for Wireless Sensor Network

Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane

Abstract:

Information of nodes’ locations is an important criterion for lots of applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors transmit the localization messages counting a hop count value to the whole network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own position. However the estimative distances can provoke large error, and affect the localization precision. To solve the problem, this paper proposes an algorithm, which makes the unknown nodes fix the nearest anchor as a reference and select two other anchors which are the most accurate to achieve the estimated location. Compared to the DV-Hop algorithm, experiment results illustrate that proposed algorithm has less average localization error and is more effective.

Keywords: Wireless Sensors Networks, Localization problem, localization average error, DV–Hop Algorithm, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907
1111 Springback Investigation on Sheet Metal Incremental Formed Parts

Authors: Hongyu Wei, Wenliang Chen, Lin Gao

Abstract:

Incremental forming is a complex forming process with continuously local cumulative deformation taking place during its process, and springback that forming quality affected by would occur. The springback evaluation method based on forming error compensation also was proposed, which it can be defined as the difference between theory and the actual amount of compensation along the measured direction. According to forming error compensation evaluation method, experiments was designed and implemented. And from the results that obtained it can be show, the magnitude of springback average (δE) of formed parts was very small, and the forming precision could be significantly improved by adopting compensation method. Based on double tensile stress state in the main deformation area, a hypothesis that there is little springback be arisen by bending behavior on the formed parts that was proposed.

Keywords: Sheet metal, incremental forming, springback, forming error compensation, geometric accuracy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
1110 Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement

Authors: Young-San Shin, Seongsoo Lee

Abstract:

Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1°. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples.

Keywords: Hall sensor, angle measurement, lookup table, arctangent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
1109 Verification of a Locked CFD Approach to Cool Down Modeling

Authors: P. Bárta

Abstract:

Increasing demand on the performance of Subsea Production Systems (SPS) suggests a need for more detailed investigation of fluid behavior taking place in subsea equipment. Complete CFD cool down analyses of subsea equipment are very time demanding. The objective of this paper is to investigate a Locked CFD approach, which enables significant reduction of the computational time and at the same time maintains sufficient accuracy during thermal cool down simulations. The result comparison of a dead leg simulation using the Full CFD and the three LCFD-methods confirms the validity of the locked flow field assumption for the selected case. For the tested case the LCFD simulation speed up by factor of 200 results in the absolute thermal error of 0.5 °C (3% relative error), speed up by factor of 10 keeps the LCFD results within 0.1 °C (0.5 % relative error) comparing to the Full CFD.

Keywords: CFD, Locked Flow Field, Speed up of CFD simulation time, Subsea

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
1108 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: Сlassification accuracy, fusion solution, total error rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
1107 Unit Root Tests Based On the Robust Estimator

Authors: Wararit Panichkitkosolkul

Abstract:

The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.

Keywords: Autoregressive, Ordinary least squares, Type I error, Power of the test, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1106 BIP-Based Alarm Declaration and Clearing in SONET Networks Employing Automatic Protection Switching

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper examines the performance of bit-interleaved parity (BIP) methods in error rate monitoring, and in declaration and clearing of alarms in those transport networks that employ automatic protection switching (APS). The BIP-based error rate monitoring is attractive for its simplicity and ease of implementation. The BIP-based results are compared with exact results and are found to declare the alarms too late, and to clear the alarms too early. It is concluded that the standards development and systems implementation should take into account the fact of early clearing and late declaration of alarms. The window parameters defining the detection and clearing thresholds should be set so as to build sufficient hysteresis into the system to ensure that BIP-based implementations yield acceptable performance results.

Keywords: Automatic protection switching, bit interleaved parity, excessive bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1105 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
1104 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method

Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie

Abstract:

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.

Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
1103 Large-Eddy Simulation of Hypersonic Configuration Aerodynamics

Authors: Huang Shengqin, Xiao Hong

Abstract:

LES with mixed subgrid-scale model has been used to simulate aerodynamic performance of hypersonic configuration. The simulation was conducted to replicate conditions and geometry of a model which has been previously tested. LES Model has been successful in predict pressure coefficient with the max error 1.5% besides afterbody. But in the high Mach number condition, it is poor in predict ability and product 12.5% error. The calculation error are mainly conducted by the distribution swirling. The fact of poor ability in the high Mach number and afterbody region indicated that the mixed subgrid-scale model should be improved in large eddied especially in hypersonic separate region. In the condition of attach and sideslip flight, the calculation results have waves. LES are successful in the prediction the pressure wave in hypersonic flow.

Keywords: Hypersonic, LES, mixed Subgrid-scale model, experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1102 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
1101 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code

Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader

Abstract:

In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.

Keywords: Bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
1100 On Constructing a Cubically Convergent Numerical Method for Multiple Roots

Authors: Young Hee Geum

Abstract:

We propose the numerical method defined by

xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N,

and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability.

Keywords: Asymptotic error constant, iterative method , multiple root, root-finding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1099 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1098 Compton Scattering of Annihilation Photons as a Short Range Quantum Key Distribution Mechanism

Authors: Roman Novak, Matjaz Vencelj

Abstract:

The angular distribution of Compton scattering of two quanta originating in the annihilation of a positron with an electron is investigated as a quantum key distribution (QKD) mechanism in the gamma spectral range. The geometry of coincident Compton scattering is observed on the two sides as a way to obtain partially correlated readings on the quantum channel. We derive the noise probability density function of a conceptually equivalent prepare and measure quantum channel in order to evaluate the limits of the concept in terms of the device secrecy capacity and estimate it at roughly 1.9 bits per 1 000 annihilation events. The high error rate is well above the tolerable error rates of the common reconciliation protocols; therefore, the proposed key agreement protocol by public discussion requires key reconciliation using classical error-correcting codes. We constructed a prototype device based on the readily available monolithic detectors in the least complex setup.

Keywords: Compton scattering, gamma-ray polarization, quantumcryptography, quantum key distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
1097 Text Mining Technique for Data Mining Application

Authors: M. Govindarajan

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.

Keywords: C5.0, Error Ratio, text mining, training data, test data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
1096 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator

Authors: K. Kouzi

Abstract:

In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.

Keywords: Direct torque control, dual stator induction motor, fuzzy logic estimation, stator resistance adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116