WASET
	%0 Journal Article
	%A Ching-Tsan Chiang and  Sheng-Jie Yang and  Jing-Kai Huang
	%D 2013
	%J International Journal of Electronics and Communication Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 78, 2013
	%T A Study of RSCMAC Enhanced GPS Dynamic Positioning
	%U https://publications.waset.org/pdf/9191
	%V 78
	%X The purpose of this research is to develop and apply the
RSCMAC to enhance the dynamic accuracy of Global Positioning
System (GPS). GPS devices provide services of accurate positioning,
speed detection and highly precise time standard for over 98% area on
the earth. The overall operation of Global Positioning System includes
24 GPS satellites in space; signal transmission that includes 2
frequency carrier waves (Link 1 and Link 2) and 2 sets random
telegraphic codes (C/A code and P code), on-earth monitoring stations
or client GPS receivers. Only 4 satellites utilization, the client position
and its elevation can be detected rapidly. The more receivable
satellites, the more accurate position can be decoded. Currently, the
standard positioning accuracy of the simplified GPS receiver is greatly
increased, but due to affected by the error of satellite clock, the
troposphere delay and the ionosphere delay, current measurement
accuracy is in the level of 5~15m. In increasing the dynamic GPS
positioning accuracy, most researchers mainly use inertial navigation
system (INS) and installation of other sensors or maps for the
assistance. This research utilizes the RSCMAC advantages of fast
learning, learning convergence assurance, solving capability of
time-related dynamic system problems with the static positioning
calibration structure to improve and increase the GPS dynamic
accuracy. The increasing of GPS dynamic positioning accuracy can be
achieved by using RSCMAC system with GPS receivers collecting
dynamic error data for the error prediction and follows by using the
predicted error to correct the GPS dynamic positioning data. The
ultimate purpose of this research is to improve the dynamic positioning
error of cheap GPS receivers and the economic benefits will be
enhanced while the accuracy is increased.
	%P 661 - 667