Search results for: Matrix equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2034

Search results for: Matrix equation

2034 Iterative solutions to the linear matrix equation AXB + CXTD = E

Authors: Yongxin Yuan, Jiashang Jiang

Abstract:

In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXTD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative algorithm is quite efficient.

Keywords: matrix equation, iterative algorithm, parameter estimation, minimum norm solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
2033 On the Positive Definite Solutions of Nonlinear Matrix Equation

Authors: Tian Baoguang, Liang Chunyan, Chen Nan

Abstract:

In this paper, the nonlinear matrix equation is investigated. Based on the fixed-point theory, the boundary and the existence of the solution with the case r>-δi are discussed. An algorithm that avoids matrix inversion with the case -1<-δi<0 is proposed.

Keywords: Nonlinear matrix equation, Positive definite solution, The maximal-minimal solution, Iterative method, Free-inversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
2032 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning

Authors: Azita Tajaddini, Ramleh Shamsi

Abstract:

In this paper, we present the block generalized minimal residual (BGMRES) method in order to solve the generalized Sylvester matrix equation. However, this method may not be converged in some problems. We construct a polynomial preconditioner based on BGMRES which shows why polynomial preconditioner is superior to some block solvers. Finally, numerical experiments report the effectiveness of this method.

Keywords: Linear matrix equation, Block GMRES, matrix Krylov subspace, polynomial preconditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
2031 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

Authors: Mahdi Nouri

Abstract:

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
2030 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C

Authors: Minghui Wang, Luping Xu, Juntao Zhang

Abstract:

Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.

Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
2029 Two Iterative Algorithms to Compute the Bisymmetric Solution of the Matrix Equation A1X1B1 + A2X2B2 + ... + AlXlBl = C

Authors: A.Tajaddini

Abstract:

In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem l i=1 AiXiBi−CF = minXi∈BRni×ni l i=1 AiXiBi−CF and the matrix nearness problem [X1, X2, ..., Xl] = min[X1,X2,...,Xl]∈SE [X1,X2, ...,Xl] − [X1, X2, ..., Xl]F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution set of above matrix equation or minimum residual problem. These matrix iterative methods have faster convergence rate and higher accuracy than former methods. Paige’s algorithms are used as the frame method for deriving these matrix iterative methods. The numerical example is used to illustrate the efficiency of these new methods.

Keywords: Bisymmetric matrices, Paige’s algorithms, Least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
2028 An Iterative Method for the Symmetric Arrowhead Solution of Matrix Equation

Authors: Minghui Wang, Luping Xu, Juntao Zhang

Abstract:

In this paper, according to the classical algorithm LSQR for solving the least-squares problem, an iterative method is proposed for least-squares solution of constrained matrix equation. By using the Kronecker product, the matrix-form LSQR is presented to obtain the like-minimum norm and minimum norm solutions in a constrained matrix set for the symmetric arrowhead matrices. Finally, numerical examples are also given to investigate the performance.

Keywords: Symmetric arrowhead matrix, iterative method, like-minimum norm, minimum norm, Algorithm LSQR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
2027 A Fast Cyclic Reduction Algorithm for A Quadratic Matrix Equation Arising from Overdamped Systems

Authors: Ning Dong, Bo Yu

Abstract:

We are concerned with a class of quadratic matrix equations arising from the overdamped mass-spring system. By exploring the structure of coefficient matrices, we propose a fast cyclic reduction algorithm to calculate the extreme solutions of the equation. Numerical experiments show that the proposed algorithm outperforms the original cyclic reduction and the structure-preserving doubling algorithm.

Keywords: Fast algorithm, Cyclic reduction, Overdampedquadratic matrix equation, Structure-preserving doubling algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
2026 Mathematical Modelling of Transport Phenomena in Radioactive Waste-Cement-Bentonite Matrix

Authors: Ilija Plecas, Uranija Kozmidis-Luburic, Radojica Pesic

Abstract:

The leaching rate of 137Cs from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source an equation for diffusion coupled to a firstorder equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.

Keywords: bentonite, cement , radioactive waste, composite, disposal, diffusion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
2025 Iterative Solutions to Some Linear Matrix Equations

Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan

Abstract:

In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.

Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
2024 Solving Linear Matrix Equations by Matrix Decompositions

Authors: Yongxin Yuan, Kezheng Zuo

Abstract:

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

Keywords: Matrix equation, Generalized inverse, Generalized singular-value decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
2023 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
2022 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.

Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
2021 On Positive Definite Solutions of Quaternionic Matrix Equations

Authors: Minghui Wang

Abstract:

The real representation of the quaternionic matrix is definited and studied. The relations between the positive (semi)define quaternionic matrix and its real representation matrix are presented. By means of the real representation, the relation between the positive (semi)definite solutions of quaternionic matrix equations and those of corresponding real matrix equations is established.

Keywords: Matrix equation, Quaternionic matrix, Real representation, positive (semi)definite solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
2020 Note to the Global GMRES for Solving the Matrix Equation AXB = F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.

Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
2019 Frequency Transformation with Pascal Matrix Equations

Authors: Phuoc Si Nguyen

Abstract:

Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.

Keywords: Frequency transformation, Bilinear z-transformation, Pre-warping frequency, Digital filters, Analog filters, Pascal’s triangle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
2018 A New Inversion-free Method for Hermitian Positive Definite Solution of Matrix Equation

Authors: Minghui Wang, Juntao Zhang

Abstract:

An inversion-free iterative algorithm is presented for solving nonlinear matrix equation with a stepsize parameter t. The existence of the maximal solution is discussed in detail, and the method for finding it is proposed. Finally, two numerical examples are reported that show the efficiency of the method.

Keywords: Inversion-free method, Hermitian positive definite solution, Maximal solution, Convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
2017 Delay-independent Stabilization of Linear Systems with Multiple Time-delays

Authors: Ping He, Heng-You Lan, Gong-Quan Tan

Abstract:

The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.

Keywords: Linear system, Delay-independent stabilization, Lyapunovfunctional, Riccati algebra matrix equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
2016 On Generalized New Class of Matrix Polynomial Set

Authors: Ghazi S. Kahmmash

Abstract:

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
2015 A Projection Method Based on Extended Krylov Subspaces for Solving Sylvester Equations

Authors: Yiqin Lin, Liang Bao, Yimin Wei

Abstract:

In this paper we study numerical methods for solving Sylvester matrix equations of the form AX +XBT +CDT = 0. A new projection method is proposed. The union of Krylov subspaces in A and its inverse and the union of Krylov subspaces in B and its inverse are used as the right and left projection subspaces, respectively. The Arnoldi-like process for constructing the orthonormal basis of the projection subspaces is outlined. We show that the approximate solution is an exact solution of a perturbed Sylvester matrix equation. Moreover, exact expression for the norm of residual is derived and results on finite termination and convergence are presented. Some numerical examples are presented to illustrate the effectiveness of the proposed method.

Keywords: Arnoldi process, Krylov subspace, Iterative method, Sylvester equation, Dissipative matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
2014 Approximate Solutions to Large Stein Matrix Equations

Authors: Khalide Jbilou

Abstract:

In the present paper, we propose numerical methods for solving the Stein equation AXC - X - D = 0 where the matrix A is large and sparse. Such problems appear in discrete-time control problems, filtering and image restoration. We consider the case where the matrix D is of full rank and the case where D is factored as a product of two matrices. The proposed methods are Krylov subspace methods based on the block Arnoldi algorithm. We give theoretical results and we report some numerical experiments.

Keywords: IEEEtran, journal, LATEX, paper, template.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
2013 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim

Abstract:

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

Keywords: Pell equation, Diophantine equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
2012 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem

Authors: Gu-Fang Mou, Ting-Zhu Huang

Abstract:

An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.

Keywords: Matrix completion, matrix completion, N10 -matrix, non-combinatorially symmetric, cycle, digraph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
2011 Fuzzy Adjacency Matrix in Graphs

Authors: Mahdi Taheri, Mehrana Niroumand

Abstract:

In this paper a new definition of adjacency matrix in the simple graphs is presented that is called fuzzy adjacency matrix, so that elements of it are in the form of 0 and n N n 1 , ∈ that are in the interval [0, 1], and then some charactristics of this matrix are presented with the related examples . This form matrix has complete of information of a graph.

Keywords: Graph, adjacency matrix, fuzzy numbers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
2010 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
2009 State Dependent Riccati Equation Based Roll Autopilot for 122mm Artillery Rocket

Authors: Muhammad Kashif Siddiq, Fang Jian Cheng, Yu Wen Bo

Abstract:

State-dependent Riccati equation based controllers are becoming increasingly popular because of having attractive properties like optimality, stability and robustness. This paper focuses on the design of a roll autopilot for a fin stabilized and canard controlled 122mm artillery rocket using state-dependent Riccati equation technique. Initial spin is imparted to rocket during launch and it quickly decays due to straight tail fins. After the spin phase, the roll orientation of rocket is brought to zero with the canard deflection commands generated by the roll autopilot. Roll autopilot has been developed by considering uncoupled roll, pitch and yaw channels. The canard actuator is modeled as a second-order nonlinear system. Elements of the state weighing matrix for Riccati equation have been chosen to be state dependent to exploit the design flexibility offered by the Riccati equation technique. Simulation results under varying conditions of flight demonstrate the wide operating range of the proposed autopilot.

Keywords: Fin stabilized 122mm artillery rocket, Roll Autopilot, Six degree of freedom trajectory model, State-dependent Riccati equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108
2008 Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method

Authors: Harpreet Kaur, Vinod Mishra, R. C. Mittal

Abstract:

In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.

Keywords: Boundary layer Blasius equation, collocation points, quasi-linearization process, uniform haar wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272
2007 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4

Authors: Armend Sh. Shabani

Abstract:

Let D ≠ 1 be a positive non-square integer. In this paper are given the proofs for two conjectures related to Pell-s equation x2 -Dy2 = ± 4, proposed by A. Tekcan.

Keywords: Pell's equation, solutions of Pell's equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
2006 Inverse Matrix in the Theory of Dynamic Systems

Authors: R. Masarova, M. Juhas, B. Juhasova, Z. Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: Dynamic system, transfer matrix, inverse matrix, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
2005 Numerical Treatment of Matrix Differential Models Using Matrix Splines

Authors: Kholod M. Abualnaja

Abstract:

This paper consider the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor’s and Picard’s matrix methods, one illustrative example is included.

Keywords: Matrix Splines, Cubic Splines, Quartic Splines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702