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Approximate solutions to large Stein matrix
eguations

Khalide Jbilou

Abstract—In the present paper, we propose numerical methods for
solving the Stein equation AXC — X — D = 0 where the matrix
A is large and sparse. Such problems appear in discrete-time control
problems, filtering and image restoration. We consider the case where
the matrix D is of full rank and the case where D is factored as a
product of two matrices. The proposed methods are Krylov subspace
methods based on the block Arnoldi algorithm. We give theoretical
results and we report some numerical experiments.
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I. INTRODUCTION
We consider the Stein matrix equation

AXC-X-D=0 1)

where A € R"*", C € RP*P, D € R"*P and X € R"*P,
The matrix equation (1) plays an important role in linear
control and filtering theory for discrete-time large-scale dy-
namical systems and other problems; see [5], [6], [8], [17] and
the references therein. They also appear in image restoration
techniques [4] and in each step of Newton’s method for
discrete-time algebraic Riccati equations [11]. Equation (1)
is also referred to as discrete Sylvester equation.

Direct methods for solving the matrix equation (1) such as
those proposed in [2], [3], [9] are attractive if the matrices are
of small size. The matrix equation (1) can be formulated as an
np X np large linear system using the Kronecker formulation

(A ® CT —I,,) vee(X) = vec(D) (2)

where ® denotes the Kronecker product; (F ® G = [fi,; G]),
vec(X) is the vector of R™? obtained by stacking the columns
of the matrix X and I, is the np x np identity matrix.
Krylov subspace methods such as the GMRES algorithm [13]
could be used to solve the linear system (2). However, for
large problems this approach cannot be applied directly.

The matrix Equation (1) has a unique solution if and only
if A(A)N(C)#1foralli=1....n;j=1,...,p where
Ai(A) is the i-th eigenvalue of the matrix A. This will be
assumed through this paper. In particular, if p(A)p(C) < 1
where p(A) denotes the spectral radius of the matrix A,
equation (1) has a unique solution.

In this work, we present Galerkin projection methods based
on the block Arnoldi algorithm [14], [15]. We first consider
the case where the n x p matrix D is of full rank and p < n.
The second part of this paper is devoted to the case where both
matrices A and C are large and D is factored as D = EF7
with a low rank.
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Il. THE BLOCK ARNOLDI ALGORIHM

In this section, we recall the block Arnoldi process applied
to the matrix A and starting with the n x p orthonormal

matrix V4.

The block Krylov  subspace Kr(A, V1) =
span{Vy, AVy,...,A*=1 11}, is the subspace generated
by the columns of the matrices Vi, AV4, ..., A*=117.

The block Arnoldi algorithm constructs the blocks Vi, ..., V4
whose columns form an orthonormal basis of the block Krylov
subspace Ky (A, V7). The algorithm is described as follows
Algorithm 1 The block Arnoldi algorithm

1) Choose a unitary n x p matrix V;.
2) Forj=1,....k

. W, = AV,
o fori=1,2,....j

- Hiy; = V" Wj,

= Wj=W; =V H,j,
« end for ¢

e Q;R; =W; (QR decomposition)
o Set V}‘+1 = Qj and HjJr]_’j = Rj.

3) End
The blocks Vi, ..., V, constructed by Algorithm 1 have their
columns mutually orthogonal provided that the upper triangu-
lar matrices H;,1,; are of maximum rank. If H;, ; = 0 then
KC; is invariant under A.

Let 7, denotes the (k4 1)p x kp upper band-Hessenberg

matrix whose nonzero entries h; j; i =1,..., (k+1)pand j =
1,...,kp are defined by Algorithm 1. 7, is the kp x kp matrix
obtained from H,, by deleting the last p-rows and Hj.y1 5 is
the p x p submatrix of the last p-rows and the last p-columns
of 7:[13.
The matrix Vy, is defined by Vi, = [Vi,..., V%] where V;,
1 =1,...,k is the i-th block constructed by the block Arnoldi
algorithm. From the block Arnoldi algorithm we can deduce
the following relations

AVe = Ve Hi + Vir1 He1 o BEF; AV = Vi He,  (3)
and

Hi = VE AV,

and VIV =14, (4)

where Ej, is the matrix of the last p columns of the kp x kp
identity matrix Ig,.

I1l. THE CASE WHERE D IS FULL RANK

In this section, we consider the case where the n x p right-
hand side matrix D of (1) is of full rank, C nonsingular and
we assume that p < n.
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Let .4 be the linear operator from R™*? onto R™*? defined
as follows

A: X — AX)=AXC-X. (5)
Then the Stein equation (1) can be written as
A(X) =D. (6)

We will solve the problem (6) which is equivalent to the initial
problem (1).

Starting from an initial guess X, and the corresponding
residual Ry = D — A XoC + Xy, the block Arnoldi Stein
method constructs, at step k, the new approximation X}, such
that

XV - x{ =2 e KA Ro);i=1,....p  (7)
with the orthogonality relation
RY L Ki(A Ro)ii=1,....p (®)

where R,@ is the ith component of the residual
R, = D — A(Xy) and X,g” is the ith of component
X1 We give the following result which is easy to prove [7].

Theorem 1: Let A be the operator defined by (5) and
assume that Ry is of full rank. Then

Ki(A, Ry) = Ki(A, Ro).

Using this last property, the relations (7) and (8) are written
as
(@) _ () _ () A
X" - X" =2," € Ki(A, Ry), (9)

and ,
RY 1L Kp(A,Ro);i=1,...,p. (10)

Assume that R is of rank p and let Ry = V,U; be the QR
decomposition of Ry where the n x p matrix V4 is orthogonal
and U, is p x p upper triangular.

Now as the columns of the matrix V. (constructed by the block
Arnoldi algorithm) form a basis of the block Krylov subspace
Kr(A, Ry), the relation (9) implies that X = Xo + Vi Vi
where Y}, is a kp x p matrix. Using the orthogonality relation
(10), it follows that

VE(Ry — AV, YiC + V3 Y3) = 0.

We finally obtain the low-dimensional Stein equation

H, VC — Yy =D (11)

with D = E,U; where E; is the kp x p matrix whose upper
p x p principal block is the identity matrix.
The matrix equation (11) will be solved by using a direct
method such as the Hessenberg-Schur method [5]. We assume
that during the iterations A;(#x) A;(C) < 1 and this implies
that the equation (11) has a unique solution.

Let us give now an expression of the residual norm that
can be used to stop the iterations in the block-Arnoldi Stein
algorithm without having to compute an extra product with
the matrix A.
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Theorem 2: At step k, the norm of the residual Ry, is given
by
| Hi1 x B YiC | p
| Hi+1,6Y6C || 7,

I Bellr =

where Y}, is the p x p matrix corresponding to the last p rows
of the matrix Y.

Proof: At step k, the residual Ry = D — AX,.C + Xy,
with X = Xo + Vi Yy, is expressed as

Ry, = Ry — AVYi.C + V.Y

and from the relation AVy = Vi Hi + Vip1 Her1 1k EL, it
follows that

Ry, = Vi[D — HiYiC + V3] — Viey1 Hiy1 o EL Vi C.

Therefore using (11) and the fact that the matrix Vi is
orthogonal the result follows. [ ]
The next result shows that the approximate solution X, is an
exact solution of a perturbed Stein matrix equation.

Theorem 3: Assume that & steps of the block Arnoldi Stein
method have been run and let X, = X + Vi Y., be the
obtained approximate solution to (1) where Y}, satisfies (11).
Then X, is a solution of the perturbed problem

(A— F)XC — X = D — FyX,C,

with Fiy = Vip1 Hy1 5 Vi and || Fy [|p=]| Hig1k || 5.
Proof: Multiplying on the left the equation (11) by the
matrix V. we get

ViHeYeC — ViYi = Vi D.

Using the relation AV, = Vi Hy + Vier1 Hi1 1 EF and the
fact that V), is orthogonal it follows that

AVLY,.C — Vi Ha s EEVE VY C — VY, = Vi D.

Then as Xj, = Xo + ViV, VeEr = Vi and VD = Ry, we
get
(A— F) X3C — Xi = D — FuXoC

where Fj, = Vk_,_lHk_;,_l’kaT and then || Fy, HF:H Hk+1,k HF
]
Note that when Hyy; , = 0, F, = 0 and hence X}, is the
exact solution of the Stein matrix equation (1). In practice,
the computational requirements growth with the iteration and
then the block Arnoldi algorithm will be computed in a
restarted mode. The block-Arnoldi algorithm for solving (1)
is summarized as follows
Algorithm 2 The block Arnoldi algorithm for Stein equations

1) Choose a tolerance tol, an initial guess X and an integer
kmazx.
2) Compute Ry = D + X — AXyC and Ry = V1 U;q: (QR
decomposition.)
3) For k=1,...,kmaz,
« Apply Algorithm 1 to the pair (A, V1) to generate
Vi,..., Vi1 and the block Hessenberg matri #y.
« Solve by a direct method the low-order Stein equa-

tion He Y C —Y, = [)
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o If || Ry ||p< tol, stop.
4) End

IV. LOW-RANK APPROXIMATE SOLUTIONS TO LARGE
STEIN EQUATIONS

In this section, we consider large Stein matrix equations
with low-rank right-hand sides

AXC - X = EFT (12)

where A € R"*" C e RP*P, F € R™ " and F € RP*", We
assume that n and p are large; r < n and r < p. From now
on, we suppose that p(A)p(C) < 1 which ensures that (12)
has a unique solution.

Equations of the form (12) arise in many application such as
control theory and model reduction in large scale discrete-time
dynamical sytems [17]. This is the case for example when one
has to compute the controllability X. and observability X,
Gramians by solving two symmetric Stein equations

AX AT - X.+ FET =0 and ATX,A— X,+ FFT =0.

The Gramians of linear time-invariant systems play a fun-
damental role in many analysis and design problems such
as computing the Hankel singular values, the Hs norm of
dynamical systems and model reduction techniques [8], [17].

Next, we will show how to extract low-rank approximate
solutions to (12) via the block Arnoldi algorithm. At step &,
let K (A, E) and K (CT, F) be the block Krylov subspaces
associated with (A, E) and (CT, F), respectively. Consider
the QR decompositions £ = V; 4U;, F' = Vi cUz and apply
the block Arnoldi process to the pairs (A, E) and (CT,F)
starting with V1 4 and Vi ¢ respectively. We obtain two block
orthonormal bases {V1,4,..., Vi a} and {Vic,...,Vic} Of
the Krylov subspaces K1, (4, E) and K (CT, F) respectively.
We denote by Hj 4 and Hy,c the block upper Hessenberg
matrices given by

Hic =Vie CT Vie
S Vieal, Ve = Vio, -

Hi,a = V;Z:AAVk,A and

where Vi 4 = [Vi,4,.. ., Vi,c| and

Hi,a = [Hfj]i,jzl,....,p . We also have the following relations
AVi A =ViaHi,a + Vk+1,AHI?+1,kEE- (13)
and
CT" Ve =Vie Hio + Virr,cHE 1 EE. (14

where E, is the matrix of the last » columns of the kr x kr
identity matrix I,..

The following result gives the exact solution of (12) in terms
of the two block Arnoldi bases.

Theorem 4: Let ¢ and [ be the degrees of the minimal
polynomials of A for £ and CT for F respectively. Then
the exact solution of the Stein equation (12) is given by

X =V, 42V (15)
where Z solves the problem
HoaZHl o —Z = EFT (16)
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with E = E\Uy, F = E, U, and E; is the kp x p matrix
whose upper p x p principal block is the identity matrix I,,.

Proof: Since ¢ and [ are the degrees of the minimal
polynomials of A for £ and C” for F, respectively, it follows
that

AVq,A = Vq,AHq,A and CTVLC = Vl,CHLC. (17)

Multiplying on the left the two sides of (16) by V, 4 and V/(,
respectively, we get

VoaHo AZHE Ve = Va2Vl = Vo aAEFTV] . (18)

Using (17) and the fact that V, 4E = E and V;oF = F,
equation (18) is written as

AV aZV]!oC = Vg4 ZV]c = EFT.

This shows that X = V, 4ZV} is the solution (unique) of
(12). ’ n
Following the result of Theorem 4.1, we consider low-rank
approximations of the form

X =VeaZVie (19)

where Z,, € R¥P**P js solution of the low order Stein equation

HiaZikMic — Ze = EFT (20)

The low-dimensional discrete Stein equation (20) will
be solved by a direct method such as the Hessenberg-
Schur method [2]. We assume that during the iterations,
Xi(He,c) Ai(Hr,a) < 1 which ensures that (20) has a unique
solution.
In the following, we give some theoretical results. The next
theorem shows that the low-order approximate solution X is
a solution of a perturbed Stein equation.

Theorem 5: At step k, let X be the low-rank approximate
solution given by (19) and (20. Then

(A— Ay) X3 (C = Cy) — X), = EFT (21)

where A, = VipaHYL VI
(Vesrr,o HEy g, Vi)™

Proof: Multiplying the low order Stein equation (20) on
the left by V4 and on the right by VI, using the relations
(13) and (14) and the fact that the two matrices Vi, a, Vi,c
are orthogonal, we get

and Oy =

AX,.C — X, — AX,C, — A X C + A X1Cl, = EFT (22)

with A, = Vk+1,A H]?JrLk VkJ:A and Cj =
(Vigr,c HEyq 4 ViLy)T. This shows the result. |

The computation of the approximation X given by (19)
needs the product of three matrices and this becomes very
expensive as k increases. In the next theorem, we show how
to compute the residual norms used to stop the iterations
without computing the approximation X . When convergence
is achieved, X} is given in a factored form and not formed
explicitly.

Theorem 6: Let X, = Vk,AZkaT’C be the approximate
solution obtained, at step k, by the block Arnoldi Stein
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method where Z;, is the solution of (20) and let Ry be the
corresponding residual. Then

I Bi 5= [ Brall® + | Br2ll® + | Rrsl®  (23)

with Rk71 = Hk,AZkEk(HE+17k)T: Rkvg =
Hil\ o B ZkH o and Rys = Hl?Jrl,kEkTZkEkH}?Jrl,kT
where Ej is the kp x p matrix of the last p columns of the
identity matrix Ijp.

Proof: The residual is given by Ry, =
AVk,AZkV;ZjCC + Vk,AZkVE.
Then using the relations AV; 4 = Vit1,4 flkﬁA, CTVk,C =

Z‘Lk,A )
Hk‘,+1,k‘,Eg

), the residual Ry can be ex-

EFT —

Vit1.c Hi.co and the expressions Hy 4 = <

Hr,c

C T
. _Hk+1,kEk
pressed in a matrix form

T
Ry = Vir1,4Z20Vi1 0

and Hpo =

(24)
with

Zp, = ( 0 Hk,AZkEk(HkCHC.k)T >
HI?+1,kEngH£C H?+1,kEngEk(Hk+1,k)T

where Zj solves (20). Therefore taking the norm of (24) and
using the fact that V11,4 = [Vk,a, Vit1,4] and Vip1c =
[Vk,c; Vier1,¢] are orthonormal matrices, the result (23) fol-
lows. [ ]
The block-Arnoldi algorithm for solving (12) is summarized
as follows
Algorithm 3 The block Arnoldi algorithm for Stein equations
1) Choose a tolerance tol and an integer kmazx.
2) Compute E =Vj 4U; and F = Vi cUs: (QR)
3) Fork=1,..., kmax
o Apply Algorithm 1 to (A,V;) and (CT,V;) to
generate Vi a,...,Viy1,4; Vie,...,Vig1,c and
the block Hessenberg matrices #y 4 and Hy c.
« Solve by a direct method the low-order Stein equa-
tion: Hy aZxHic — Zr = EFT.
o If || Ry [|F< tol, stop
4) End.

V. THE SYMMETRIC STEIN EQUATION
In this section, we consider symmetric Stein equations

AXAT - X +BBT =0

where A € R™™™ and B € R"*P with p < n.

If p(A) < 1 where p(A) denotes the spectral radius of A, the
symmetric Stein equation (25) (called also Schur stable) has
a unique solution given by (see [11])

(25)

X=Y 4'BBT A",
=0
As in [10], we apply the block Arnoldi algorithm to the pair
(A, B) and get the matrices V;, and ;. We then consider
approximations of the form X, = VkaVkT where Z;, solves
the low-order symmetric Stein equation

HpZLHE — Z, = BBT.

(26)

(27)
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with B = VI B.

Using Theorem 6 and Theorem 7, we get the following results
Theorem 7: Let X, be the low-rank approximate solution

obtained at step k£ and let X be the exact solution of the

symmetric Stein equation (25). Then
(A—A) X (A—- AT - X, + BBT =0  (28)

and

| R 17=2 || HeYo ExH 1 |7 + | Heor w B YeExHiL e 15

(29)
where Ej is the kp x p matrix of the last p columns of the
identity matrix Ijpxxp and Ay = Vi1 Hip1x ViL
In the following theorem, we give an upper bound of the norm
of the error X — X, where X is the exact solution of the
problem (25) and X, is the low-rank approximate solution
of (25) obtained at step k£ by applying the block Arnoldi
algorithm.

Theorem 8: Assume that & steps of the block Arnoldi Stein
algorithm have been run and let X be the obtained low-rank
approximation. Then if || A ||2< 1, we have

| Hit1k lr | Ye llr
1- || A3

Proof: Subtracting (28) from (25), it follows that the error
X — X, is the unique solution of the symmetric Stein equation

X =Xellr<2vp [ All2

AX = X)AT — (X — X)) = —AX AT — A, X, AT, (30)

Now since p(A) < 1, the unique solution of (30) is written as

X~ Xp= > A [AXAT + A X, AT AT
=0

Therefore

| X = Xp [2<2 || AXRAL [l2 D IIA[3 . (31)
1=0

On the other hand if G € R"*P we have || G ||2<|| G ||r<
VP G 2.

Invoking the expression of Aj used in Theorem 5.1 and the
fact that X, =V}, Z, VL, we obtain

I Xk A% P < || Herre Il || Ve llp - (32)

Then using (31) and (32), we obtain the desired result. ]

V1. NUMERICAL EXAMPLES

The tests reported in this section were run on SUN Mi-
crosystems workstations using Matlab. In all our experiments,
we divided the matrices A and C by | A ||; and || C |1
respectively.

We considered the Stein equation

AXC - X =EFT

where the matrices A, C, E and F are of dimension n x n,
p X p, nxrand p x r respectively with r << n, p.

For all our experiments, the tests where stopped when ||
Ry, |p< 1078,
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TABLE |
MATRICES FROM HARWELL BOEING COLLECTION
Matrices A, B CPU-time iter. res. norms
'A=Sherman5
C=Serman4 0.58 7 5.9 x 1079
n = 3312, p = 1104
A=Pde2961
C=Fidap009 2.11 13 || 2.5 x 1078
n = 2961, p = 3363

Example 1 For this experiment, we used matrices from
Harwell-Boeing Collection: Sherman4 (n = 1104 and
nnz(A) = 3786), PDE2961 (n = 2961 and nnz(A) =),
Sherman5 (n = 3312 and nnz(A) = 20793) and Fidap009
(n = 3363 and nnz(A) = 99397) where nnz(A) denotes the
number of nonzero coefficients in A.

The entries of the matrices £ and F' were random values
uniformly distributed on [0, 1] and we used r = 4.

In Table I, we listed the results obtained with different ma-
trices. A maximum number of itemax = 50 iterations was
allowed to the block-Arnoldi Stein algorithm (Algorithm 3).
The expression given in Theorem 7 was used to compute the
norm of the residual Ry, without computing the approximation
X which is given in a factored form when convergence is
achieved.

Example 2 In this experiment, we applied the block-Arnoldi
Stein algorithm (Algorithm 3) with matrices A and B defined
as follows. The matrix A is generated from the 5-point
discretization of the operator

Lifu) = &= i) 5~ fale) G — falop)u

on the unit square [0, 1] x [0, 1] with homogeneous Dirichlet
boundary conditions. We set f(z,y) = e +¥, fo(x,y) = 2ay
and f3(z,y) = cos(zy).

The matrix C'is also generated from the 5-point discretization
of the operator

ou ou
La(u) = —Au+ g1 (2, y) Fr g2(z, ) 7 +g3(z,y)u

on the unit square [0, 1] x [0, 1] with homogeneous Dirichlet
boundary conditions. We set gi(z,y) = sin(z + 2y),
g2(z,y) = €™ and g3(z,y) = zy.

The entries of the matrices £ and F' were random values
uniformly distributed on [0, 1]. The dimensions of the matrices
Aand C are n = n2 and p = p? respectively, where ng
and pg are the number of inner grid points in each direction.
For this experiment we used n = 40.000, p = 10.000,
which corresponds to a very large linear system of dimension
4108 x 4108. We used different values of r (r = 5, r = 10,
r = 20 and r = 30). The obtained results are reported in
Table I1.

VII. CONCLUSION

We proposed in this paper block Krylov subspace methods
for solving large and sparse Stein matrix equations. We first
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TABLE 1l
RESULTS WITH n = 40.000 AND p = 10.000
Values of r 5 10 20 30
iteration 14 14 13 12
res. norms | 2.6 x 10~ 33x107% | 2.2 x 10~ 1.6 x 10~8
cpu-time 9.9 22.2 60.3 125.1

considered the case when the right hand side is of full rank. In
the second part of the paper, we showed how to apply the block
Arnoldi algorithm to derive low-rank approximate solutions to
Stein matrix equations with factored right-hand sides. In the
two cases, we gave some theoretical results. The numerical
examples show that the proposed methods are attractive and
could be used for large problems.
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