Search results for: Lyapunov vector function
2922 Synthesis of a Control System of a Deterministic Chaotic Process in the Class of Two-Parameter Structurally Stable Mappings
Authors: M. Beisenbi, A. Sagymbay, S. Beisembina, A. Satpayeva
Abstract:
In this paper, the problem of unstable and deterministic chaotic processes in control systems is considered. The synthesis of a control system in the class of two-parameter structurally stable mappings is demonstrated. This is realized via the gradient-velocity method of Lyapunov vector functions. It is shown that the gradient-velocity method of Lyapunov vector functions allows generating an aperiodic robust stable system with the desired characteristics. A simple solution to the problem of synthesis of control systems for unstable and deterministic chaotic processes is obtained. Moreover, it is applicable for complex systems.
Keywords: Control system synthesis, deterministic chaotic processes, Lyapunov vector function, robust stability, structurally stable mappings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3892921 Stability Analysis of Linear Switched Systems with Mixed Delays
Authors: Xiuyong Ding, Lan Shu
Abstract:
This paper addresses the stability of the switched systems with discrete and distributed time delays. By applying Lyapunov functional and function method, we show that, if the norm of system matrices Bi is small enough, the asymptotic stability is always achieved. Finally, a example is provided to verify technically feasibility and operability of the developed results.
Keywords: Switched system, stability, Lyapunov function, Lyapunov functional, delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17822920 The Global Stability Using Lyapunov Function
Authors: R. Kongnuy, E. Naowanich, T. Kruehong
Abstract:
An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21482919 Ψ-Eventual Stability of Differential System with Impulses
Authors: Bhanu Gupta
Abstract:
In this paper, the criteria of Ψ-eventual stability have been established for generalized impulsive differential systems of multiple dependent variables. The sufficient conditions have been obtained using piecewise continuous Lyapunov function. An example is given to support our theoretical result.
Keywords: impulsive differential equations, Lyapunov function, eventual stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40522918 Stability of Interconnected Systems under Structural Perturbation: Decomposition-Aggregation Approach
Authors: M. Kidouche, H. Habbi, M. Zelmat
Abstract:
In this paper, the decomposition-aggregation method is used to carry out connective stability criteria for general linear composite system via aggregation. The large scale system is decomposed into a number of subsystems. By associating directed graphs with dynamic systems in an essential way, we define the relation between system structure and stability in the sense of Lyapunov. The stability criteria is then associated with the stability and system matrices of subsystems as well as those interconnected terms among subsystems using the concepts of vector differential inequalities and vector Lyapunov functions. Then, we show that the stability of each subsystem and stability of the aggregate model imply connective stability of the overall system. An example is reported, showing the efficiency of the proposed technique.Keywords: Composite system, Connective stability, Lyapunovfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15052917 On General Stability for Switched Positive Linear Systems with Bounded Time-varying Delays
Authors: Xiu Liu, Shouming Zhong, Xiuyong Ding
Abstract:
This paper focuses on the problem of a common linear copositive Lyapunov function(CLCLF) existence for discrete-time switched positive linear systems(SPLSs) with bounded time-varying delays. In particular, applying system matrices, a special class of matrices are constructed in an appropriate manner. Our results reveal that the existence of a common copositive Lyapunov function can be related to the Schur stability of such matrices. A simple example is provided to illustrate the implication of our results.
Keywords: Common linear co-positive Lyapunov functions, positive systems, switched systems, delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14472916 Regional Stability Analysis of Rotor-Ball Bearing and Rotor- Roller Bearing Systems Considering Switching Phenomena
Authors: Jafar Abbaszadeh Chekan, Kaveh Merat, Hassan Zohoor
Abstract:
In this study the regional stability of a rotor system which is supported on rolling bearings with radial clearance is studied. The rotor is assumed to be rigid. Due to radial clearance of bearings and dynamic configuration of system, each rolling elements of bearings has the possibility to be in contact with both of the races (under compression) or lose its contact. As a result, this change in dynamic of the system makes it to be known as switching system which is a type of Hybrid systems. In this investigation by adopting Multiple Lyapunov Function theorem and using Hamiltonian function as a candidate Lyapunov function, the stability of the system is studied. The purpose of this study is to inspect the regional stability of rotor-roller bearing and rotor-ball bearing systems.
Keywords: Stability analysis, Rotor-rolling bearing systems, Switching systems, Multiple Lyapunov Function Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17432915 Self-Organizing Control Systems for Unstable and Deterministic Chaotic Processes
Authors: M. A. Beisenbi, N. M. Kissikova, S. E. Beisembina, S. T. Suleimenova, S. A. Kaliyeva
Abstract:
The paper proposes a method for constructing a self-organizing control system for unstable and deterministic chaotic processes in the class of catastrophe “hyperbolic umbilic” for objects with m-inputs and n-outputs. The self-organizing control system is investigated by the universal gradient-velocity method of Lyapunov vector-functions. The conditions for self-organization of the control system in the class of catastrophes “hyperbolic umbilic” are shown in the form of a system of algebraic inequalities that characterize the aperiodic robust stability in the stationary states of the system.
Keywords: Gradient-velocity method of Lyapunov vector-functions, hyperbolic umbilic, self-organizing control system, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4602914 A New Stability Analysis and Stabilization of Discrete-Time Switched Linear Systems Using Vector Norms Approach
Authors: Marwen Kermani, Anis Sakly, Faouzi M'sahli
Abstract:
In this paper, we aim to investigate a new stability analysis for discrete-time switched linear systems based on the comparison, the overvaluing principle, the application of Borne-Gentina criterion and the Kotelyanski conditions. This stability conditions issued from vector norms correspond to a vector Lyapunov function. In fact, the switched system to be controlled will be represented in the Companion form. A comparison system relative to a regular vector norm is used in order to get the simple arrow form of the state matrix that yields to a suitable use of Borne-Gentina criterion for the establishment of sufficient conditions for global asymptotic stability. This proposed approach could be a constructive solution to the state and static output feedback stabilization problems.
Keywords: Discrete-time switched linear systems, Global asymptotic stability, Vector norms, Borne-Gentina criterion, Arrow form state matrix, Arbitrary switching, State feedback controller, Static output feedback controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16392913 Methodology for Quantifying the Meaning of Information in Biological Systems
Authors: Richard L. Summers
Abstract:
The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems is fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential.
Keywords: Semiotic meaning, Shannon information, Lyapunov, living systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5152912 ψ-exponential Stability for Non-linear Impulsive Differential Equations
Authors: Bhanu Gupta, Sanjay K. Srivastava
Abstract:
In this paper, we shall present sufficient conditions for the ψ-exponential stability of a class of nonlinear impulsive differential equations. We use the Lyapunov method with functions that are not necessarily differentiable. In the last section, we give some examples to support our theoretical results.Keywords: Exponential stability, globally exponential stability, impulsive differential equations, Lyapunov function, ψ-stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39352911 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10482910 Improved Stability Criteria for Neural Networks with Two Additive Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of stability criteria for neural networks with two additive time-varying delays.A new Lyapunov-Krasovskii function is constructed and some new delay dependent stability criterias are derived in the terms of linear matrix inequalities(LMI), zero equalities and reciprocally convex approach.The several stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Stability, Neural networks, Linear Matrix Inequalities (LMI) , Lyapunov function, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14492909 Monotonicity of Dependence Concepts from Independent Random Vector into Dependent Random Vector
Authors: Guangpu Chen
Abstract:
When the failure function is monotone, some monotonic reliability methods are used to gratefully simplify and facilitate the reliability computations. However, these methods often work in a transformed iso-probabilistic space. To this end, a monotonic simulator or transformation is needed in order that the transformed failure function is still monotone. This note proves at first that the output distribution of failure function is invariant under the transformation. And then it presents some conditions under which the transformed function is still monotone in the newly obtained space. These concern the copulas and the dependence concepts. In many engineering applications, the Gaussian copulas are often used to approximate the real word copulas while the available information on the random variables is limited to the set of marginal distributions and the covariances. So this note catches an importance on the conditional monotonicity of the often used transformation from an independent random vector into a dependent random vector with Gaussian copulas.
Keywords: Monotonic, Rosenblatt, Nataf transformation, dependence concepts, completely positive matrices, Gaussiancopulas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12112908 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4882907 A Cohesive Lagrangian Swarm and Its Application to Multiple Unicycle-like Vehicles
Authors: Jito Vanualailai, Bibhya Sharma
Abstract:
Swarm principles are increasingly being used to design controllers for the coordination of multi-robot systems or, in general, multi-agent systems. This paper proposes a two-dimensional Lagrangian swarm model that enables the planar agents, modeled as point masses, to swarm whilst effectively avoiding each other and obstacles in the environment. A novel method, based on an extended Lyapunov approach, is used to construct the model. Importantly, the Lyapunov method ensures a form of practical stability that guarantees an emergent behavior, namely, a cohesive and wellspaced swarm with a constant arrangement of individuals about the swarm centroid. Computer simulations illustrate this basic feature of collective behavior. As an application, we show how multiple planar mobile unicycle-like robots swarm to eventually form patterns in which their velocities and orientations stabilize.
Keywords: Attractive-repulsive swarm model, individual-based swarm model, Lagrangian swarm model, Lyapunov stability, Lyapunov-like function, practical stability, unicycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15392906 Reachable Set Bounding Estimation for Distributed Delay Systems with Disturbances
Authors: Li Xu, Shouming Zhong
Abstract:
The reachable set bounding estimation for distributed delay systems with disturbances is a new problem. In this paper,we consider this problem subject to not only time varying delay and polytopic uncertainties but also distributed delay systems which is not studied fully untill now. we can obtain improved non-ellipsoidal reachable set estimation for neural networks with time-varying delay by the maximal Lyapunov-Krasovskii fuctional which is constructed as the pointwise maximum of a family of Lyapunov-Krasovskii fuctionals corresponds to vertexes of uncertain polytope.On the other hand,matrix inequalities containing only one scalar and Matlabs LMI Toolbox is utilized to give a non-ellipsoidal description of the reachable set.finally,numerical examples are given to illustrate the existing results.
Keywords: Reachable set, Distributed delay, Lyapunov-Krasovskii function, Polytopic uncertainties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18562905 Synchronization Between Two Chaotic Systems: Numerical and Circuit Simulation
Authors: J. H. Park, T. H. Lee, S. M. Lee, H. Y. Jung
Abstract:
In this paper, a generalized synchronization scheme, which is called function synchronization, for chaotic systems is studied. Based on Lyapunov method and active control method, we design the synchronization controller for the system such that the error dynamics between master and slave chaotic systems is asymptotically stable. For verification of our theory, computer and circuit simulations for a specific chaotic system is conducted.
Keywords: Chaotic systems, synchronization, Lyapunov method, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16872904 Exponential Stability Analysis for Uncertain Neural Networks with Discrete and Distributed Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays. Together with a suitable augmented Lyapunov Krasovskii function, zero equalities, reciprocally convex approach and a novel sufficient condition to guarantee the exponential stability of the considered system. The several exponential stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Exponential stability, Uncertain Neural networks, LMI approach, Lyapunov-Krasovskii function, Time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14442903 New Stability Analysis for Neural Networks with Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of asymptotically stability for neural networks with time-varying delays.By establishing a suitable Lyapunov-Krasovskii function and several novel sufficient conditions are obtained to guarantee the asymptotically stability of the considered system. Finally,two numerical examples are given to illustrate the effectiveness of the proposed main results.
Keywords: Neural networks, Lyapunov-Krasovskii, Time-varying delays, Linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17192902 Nonlinear Torque Control for PMSM: A Lyapunov Technique Approach
Authors: M. Ouassaid, M. Cherkaoui, A. Nejmi, M. Maaroufi
Abstract:
This study presents a novel means of designing a simple and effective torque controller for Permanent Magnet Synchronous Motor (PMSM). The overall stability of the system is shown using Lyapunov technique. The Lyapunov functions used contain a term penalizing the integral of the tracking error, enhancing the stability. The tracking error is shown to be globally uniformly bounded. Simulation results are presented to show the effectiveness of the approach.
Keywords: Integral action, Lyapunov Technique, Non Linear Control, Permanent Magnet Synchronous Motors, Torque Control, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33812901 Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory
Authors: Ping He
Abstract:
This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.Keywords: Partial stabilization, Nonlinear critical systems, Centermanifold theory, Lyapunov function, System reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17632900 Strict Stability of Fuzzy Differential Equations with Impulse Effect
Authors: Sanjay K.Srivastava, Bhanu Gupta
Abstract:
In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.
Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14692899 New Stabilization for Switched Neutral Systems with Perturbations
Authors: Lianglin Xiong, Shouming Zhong, Mao Ye
Abstract:
This paper addresses the stabilization issues for a class of uncertain switched neutral systems with nonlinear perturbations. Based on new classes of piecewise Lyapunov functionals, the stability assumption on all the main operators or the convex combination of coefficient matrices is avoid, and a new switching rule is introduced to stabilize the neutral systems. The switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. Finally, three simulation examples are given to demonstrate the significant improvements over the existing results.
Keywords: Switched neutral system, piecewise Lyapunov functional, nonlinear perturbation, Lyapunov-Metzler linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16562898 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay
Authors: Yunquan Ke, Chunfang Miao
Abstract:
In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.
Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15312897 Implicit Lyapunov Control of Multi-Control Hamiltonians Systems Based On the State Error
Authors: Fangfang Meng, Shuang Cong
Abstract:
In the closed quantum system, if the control system is strongly regular and all other eigenstates are directly coupled to the target state, the control system can be asymptotically stabilized at the target eigenstate by the Lyapunov control based on the state error. However, if the control system is not strongly regular or as long as there is one eigenstate not directly coupled to the target state, the situations will become complicated. In this paper, we propose an implicit Lyapunov control method based on the state error to solve the convergence problems for these two degenerate cases. And at the same time, we expand the target state from the eigenstate to the arbitrary pure state. Especially, the proposed method is also applicable in the control system with multi-control Hamiltonians. On this basis, the convergence of the control systems is analyzed using the LaSalle invariance principle. Furthermore, the relation between the implicit Lyapunov functions of the state distance and the state error is investigated. Finally, numerical simulations are carried out to verify the effectiveness of the proposed implicit Lyapunov control method. The comparisons of the control effect using the implicit Lyapunov control method based on the state distance with that of the state error are given.
Keywords: Implicit Lyapunov control, state error, degenerate cases, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15012896 Adaptive Functional Projective Lag Synchronization of Lorenz System
Authors: Tae H. Lee, J.H. Park, S.M. Lee, H.Y. Jung
Abstract:
This paper addresses functional projective lag synchronization of Lorenz system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. For this purpose, an adaptive control law is proposed to make the states of two identical Lorenz systems asymptotically synchronize up. Based on Lyapunov stability theory, a novel criterion is given for asymptotical stability of the null solution of an error dynamics. Finally, some numerical examples are provided to show the effectiveness of our results.
Keywords: Adaptive function projective synchronization, Chaotic system, Lag synchronization, Lyapunov method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16052895 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot
Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie
Abstract:
This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.Keywords: Mobile robot, trajectory tracking, Lyapunov, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23882894 Evidence of the Long-run Equilibrium between Money Demand Determinants in Croatia
Authors: B. Skrabic, N. Tomic-Plazibat
Abstract:
In this paper real money demand function is analyzed within multivariate time-series framework. Cointegration approach is used (Johansen procedure) assuming interdependence between money demand determinants, which are nonstationary variables. This will help us to understand the behavior of money demand in Croatia, revealing the significant influence between endogenous variables in vector autoregrression system (VAR), i.e. vector error correction model (VECM). Exogeneity of the explanatory variables is tested. Long-run money demand function is estimated indicating slow speed of adjustment of removing the disequilibrium. Empirical results provide the evidence that real industrial production and exchange rate explains the most variations of money demand in the long-run, while interest rate is significant only in short-run.Keywords: Cointegration, Long-run equilibrium, Money demand function, Vector error correction model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21552893 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants
Authors: Nisha Budhwar, Sunita Daniel
Abstract:
In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.Keywords: Susceptible, exposed, infective, recovered, infective immigrants, reproduction number, Lyapunov function, equilibrium points, global stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295