A New Stability Analysis and Stabilization of Discrete-Time Switched Linear Systems Using Vector Norms Approach
Authors: Marwen Kermani, Anis Sakly, Faouzi M'sahli
Abstract:
In this paper, we aim to investigate a new stability analysis for discrete-time switched linear systems based on the comparison, the overvaluing principle, the application of Borne-Gentina criterion and the Kotelyanski conditions. This stability conditions issued from vector norms correspond to a vector Lyapunov function. In fact, the switched system to be controlled will be represented in the Companion form. A comparison system relative to a regular vector norm is used in order to get the simple arrow form of the state matrix that yields to a suitable use of Borne-Gentina criterion for the establishment of sufficient conditions for global asymptotic stability. This proposed approach could be a constructive solution to the state and static output feedback stabilization problems.
Keywords: Discrete-time switched linear systems, Global asymptotic stability, Vector norms, Borne-Gentina criterion, Arrow form state matrix, Arbitrary switching, State feedback controller, Static output feedback controller.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061681
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641References:
[1] A. S. Morse, "Control using logic-based switching," Springer-Verlag, London, 1997.
[2] P. Varaiya, "Smart cars on smart roads: problems of control," IEEE Trans. Automat. Control, 38, pp.195-207, 1993.
[3] W.S .Wong, R.W. Brockett, "Systems with finite communication bandwidth constraints-part I: state 4 estimation problems," IEEE Trans. Automat. Control l42, pp.1294-1299, 1997.
[4] N.H. El-Farra, P.D. Christofides, "Coordinating feedback and switching for control of spatially distributed processes, "Comput. Chem.Eng 28, pp. 111-128, 2004.
[5] R. Shorten, F. Wirth, O. Mason, K. Wulf, C. King, "Stability criteria for switched and hybrid systems,"SIAM Rev 49, pp. 545-592, 2007.
[6] D. Liberzon, A.S. Morse, "Basic problems in stability and design of switched systems," IEEE Control Syst. Mag. 19, pp. 59-70, 1999.
[7] R.A. Decarlo, M.S. Branicky, S. Pettersson, B. Lennartson, "Perspectives and results on the stability and stabilizability of hybrid systems," Proceedings of the IEEE, Special issue on Hybrid Systems, P. J. Antsaklis Ed 88, pp. 1069-108, 2000.
[8] D. Liberzon, "Switching in Systems and Control,"Birkhauser, Boston, 2003.
[9] M. Margaliot, "Stability analysis of switched systems using variational principles: an introduction," Automatica 42, pp. 2059-2077, 2006.
[10] S.H. Lee, T. H. Kim, J.T. Lim, "A new stability analysis of switched systems,"Automatica 36, pp.917-922, 2000.
[11] G. Zhai, X. Xu, “Analysis and design of switched normal systems,” Nonlinear Anal-Theor,pp. 652248–2259, 2006.
[12] M. Vidyasagar, “Nonlinear Systems Analysis,” Upper Saddle River, NJ: Prentice-Hall, 1993.
[13] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. Automat. Control 43, pp. 475-482, 1998.
[14] M. Ksouri, P. Borne, “Systèmes non lineaires, ” Collection technologie, 1999.
[15] P. Borne, J. P. Richard, N. E. Radhy, “Stabilité stabilisation régulation: approche par les normes vectorielles Systèmes non linéaires, tome 2: stabilité-stabilisation, coordonné par A.J. Fossard et D. Normand-Cyrot, Responsable du tome: P. Borne, Editions Masson, ” Paris, pp. 45–90, 1993.
[16] M. Benrejeb, D. Soudani, A. Sakly, P. Borne, “New Discrete Tanaka Sugeno Kang Fuzzy Systems Characterization and Stability Domain,” IJCCC Vol. I, pp.9-19, 2006.
[17] P. Borne, J. C.Gentina, F. Laurent, “ Sur la stabilité des systèmes échantillonnés non linéaires, ” REV.Fr.autoinfRech.oper, 2, pp. 96-105, 1972.
[18] S. Ben Attia, S. Salhi, M. Ksouri, J. Bernussou, “Improved LMI formulation for robust dynamic output feedback controller design of discrete-time switched systems via switched Lyapunov function,” 2009 IEEE Conf. Signals, Circuits &Systems 978, pp. 4244–4398.
[19] F. R. Gantmacher, “ Théorie des matrices," Ed. Dunod Paris, 1966.
[20] P. Borne, P. Vanheeghe, E. Duflos, “Automatisation des processus dans l’espace d’état, ” Ed. Technip, Paris, 2007.
[21] M. Benrejeb, P. Borne, F. Laurent, “Sur une application de la représentation en flèche à l’analysedes processus, ” Rairo-Autom-Syst 16 pp.133–146, 1982.
[22] P. Borne, “Nonlinear system stability: Vector norm approach System and Control,” Encyclopedia t.5 pp.3402-3406, 1987.