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Abstract—In this paper, the problem of unstable and
deterministic chaotic processes in control systems is considered. The
synthesis of a control system in the class of two-parameter
structurally stable mappings is demonstrated. This is realized via the
gradient-velocity method of Lyapunov vector functions. It is shown
that the gradient-velocity method of Lyapunov vector functions
allows generating an aperiodic robust stable system with the desired
characteristics. A simple solution to the problem of synthesis of
control systems for unstable and deterministic chaotic processes is
obtained. Moreover, it is applicable for complex systems.
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1. INTRODUCTION

TUDIES in the last century have revealed a wide variety

of dynamics of nonlinear systems and led to one of the
most important discoveries of the 20th century in nonlinear
dynamical systems - deterministic chaos and "strange
attractor" [1], [2].

It is now generally accepted that real dynamical systems are
nonlinear and deterministic chaos and instabilities are intrinsic
properties of any deterministic dynamical system. In nonlinear
dynamical systems, when deterministic chaos is generated, the
trajectories of the system are globally limited and locally
unstable inside the "strange attractor". When nonlinear
dynamical systems are linearized, instabilities can be
generated in the linear dynamical system.

Deterministic chaos manifests itself in mechanical systems
in the form of vibrations, in technical and technological
systems in the form of “runaway”, which leads to accidents, in
economic systems in the form of short-term fluctuations and
fluctuations that provoke a “crisis”.

Methods for controlling chaotic processes are developing in
several directions [3]-[5], stabilization of unstable periodic
oscillations [3], [5], [6], chaotization [3]-[6], controlled
synchronization [3]-[7], modification of attractors [5], [8], [9],
etc. A new, especially relevant direction is the systems of
complete suppression of the regime of deterministic chaos and
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instability [10]-[14].

Chaotic and unstable systems represent a class of
uncertainty models. Uncertainty may be due to ignorance of
the true values of the parameters of the control system at the
design stage and their unpredictable change during operation.
The ability of a control system to maintain stability under
uncertainty is understood as robust stability [15], [16]. Thus, if
the robustness conditions are violated, i.e., when uncertain
parameters go beyond the boundaries of robust stability, a
regime of deterministic chaos and instability is generated in
the system [11], [14].

In conditions of significant uncertainty, an increase in the
potential of robust stability [11]-[13] by synthesizing a control
system in the class of two-parameter structurally stable
mappings [17] is the main factor that guarantees the control
system protection from the regime of deterministic chaos and
instability.

The task of the synthesis of automatic control systems for
given quality indicators is the choice of parameters and
structure of the system with a known dynamic description of
the control object in order to ensure the necessary values of
quality indicators [18].

The problem of synthesizing a control system for unstable
and deterministic chaotic processes in the class of two-
parameter structurally stable mappings is solved by the
gradient-velocity method of the Lyapunov vector function
[11], [19], [20], taking into account such quality indicators as:
stability, robustness, the desired type of transient processes,
the absence overshoot, no oscillations, speed, static accuracy
of the control system, etc. In general, the gradient-velocity
method of the Lyapunov vector function allows to construct an
aperiodic robust stable system with the desired characteristics.

II. PROBLEM DESCRIPTION

A.The Control System for Unstable and Deterministic
Chaotic Processes

The control system is described by:

x = Ax + Bu, x(t)eR™, €))
where
a;; Az Qi3 Q1n byy 0 O 0
A= A1 Gz Az Aon B= 0 by O 0
An1  Gn2  An3 Ann 0 0 o0 bun
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x1(t) uy (8)
X(t) — xZ(t) , u(t) — u2(t)
xn(t) Um (1)
The control law is given in the form of two-parameter
structurally stable mappings [17]:
w(t) = —xt —klx? +kix;, i=1,..,n 2)
The control system (1), taking into account (2), is
represented in expanded form as:

(551 = —by1 X} — by kixi + (arq + by ki)x; +
i +a2%; + -+ apXy
X = g1%1—bpox3 — bork3xs +
{ +(a22 + bzzk%)Xz + -+ AynXn (3)
[
|5, = anyxy + anaxy + -+ —bypxt —
k _bnnkrltx% + (ann + bnnkrzz)xn

System (3) has a stationary state [11], [12]:
Xt =0,x2,=0,..,x1, =0 4)

Other stationary states will be determined by a solution of
the form:

%/
1 _ o (@utbuk?) '3 o _ | 3lautbuk? . _
kl_g(Tll ,xis—i Til,l—l,...,n. (5)

First, we investigate the robust stability of the stationary
state (4) of system (3) using the gradient-velocity method, of
the Lyapunov vector function [11], [19], [20].

From (3), the components of the gradient vector of the

Lyapunov  vector function are determined V(x)=
V1), e, Vo ()):
vy (x)
alxl = byyxf + bykixf — (ay1 + by kxy,
avy(x) v, (x)
_alxz = —0Qq2Xy, 31;(3 = —0Q13X3, w0
v, (x) v, (x)
alTnz —A1nXn; ale = —az1Xq,
aVz(x)_b 4+b kl 2 _ +b kz
Tox, 22X7 22k2x5 — (az; 22k3)x7, (6)
v, (x) 9V, (x)
62x3 = —0Q23X3, +) 62xn = —0znXn;
V() W00
an—xl=_ n1X1, 07;2 = T An2X2, e
9Vn(x)
W = bnnxg + bnnk111x'r21 —(ann + bnnkrzt)xn
Using the components of the gradient vectors of the

Lyapunov vector function (6), we obtain the Lyapunov vector
function in scalar form:

1 5,1 1,3_1 2y,2 _ 1 2
V(x) = 3Dux? +3byikixg — 5 (agg + by k)xf — 5 ax5 —
1 2 1 5 1 s 1 5, 1 1.3 1
2@13X3 = = S QX = 5 A1 X0+ ohapXy + 2 baokax; — (A +

2y,.2 1 2 1 2 1 2_1 2
byak3)x; T3 023X3 T T S lopXn T T S Ana Xy T S AnpXy T
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1 1 1 1
Ean3x§ -t Ebnnfo + Ebnnkrllxrgi -3 (apn + bnnk121)x121(7)

The conditions for the positive definiteness of the function
V(x) from (7) are not obvious; therefore, we can use the
Morse lemma from catastrophe theory [17].

It follows that the Lyapunov function (7) in the vicinity of
the stationary state (4) can be represented as a quadratic form

V(x) = —(ay; + by kf + apy +ag; + -+ an)xf — (a1 + ap, +
byok3 + a3y + -+ Anp)x5 — (ar3 + Gg3 + A3z + byzki + -+
ans)x?% - (aln +ax +azyt+ ot ap, t+ bnnk‘rzl) xrzl(g)

Conditions for the positive definiteness of the quadratic
form (8), that is, of aperiodic robust stability of the stationary
state (4) are determined by the inequalities

(—(ay1 + b1k +ap +az;+-+ap) >0
' —(Q13 + Qpp + bypk? +azy + -+ ayy) >0
4 —(a13 + Gp3 + a3 + bygk? 4+ ay3) >0 ©
|

—(agp + Azp + azp + -+ Apy + bppk2) >0

Thus, the stability region of the steady state (4) is
determined by the system of inequalities (9).

Let us investigate the stability of the stationary state (5) by
the gradient-velocity method the vector of the Lyapunov
function. We represent the equations of state (3) in deviations
from the stationary state (5) [11]:

3 |a;1+byq1k3 x3 —
1

2bqq

3, Qua+bya k)2
—3byy (HT:l) xlz — (a1 + b11k%)x1 +

+a12x2 + aq3X3 + -+ A1nXn

. 4 3[az2+b22k3 3
Xy = QX1 — byyxy — 4byy ,—an Xy —

2
3| (aga+bayk3 2 2
—3by, (721722 ) x5 — (agz + byok3)x, +

+az3xz + -+ ayxy,

. 4
Xy = —byyxi — 4byy

(10)

4
T bnnxn -

2
3 |@nntbunky 3 3| (@nntbunky 2
—4by, [ x, — 3bp, () x5 —
2bpn 2bnn

_(ann + bnnk‘rzl)xn

From (10) we determine the components of the gradient
vector for the Lyapunov vector function V(x)=

V100, s Va ()
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Vi (x) _ 4 3a; +by ki 3
Fr by1x7 + 4by; o, M +
2
3[(ai1+by ki 2 2
+3bq1 (—zbu 1) x{ + (ayq + by ki)xy,

Vi(x) _ vy (x) _
9%, = —0aq2Xy, 9% = —QA13X3) vy
vy (x) IV, (x)
/= - ; = —a,X
9xp in‘n, ax, 2141

AV, (x) 3 |ayy+byy k2
2_=b22xg+4b22 ng_k
0x; 2by;

i (1)
3| (@22 +bapk3 2 2
+3b221,(T22) x3 + (Q22 + byok3)xy,
W (x) _ W (x) _ L.
9% = —0a33X3, ,—axn = —AynXp;
WV (x) WV (x) _
a"—xl = _amxl’a"Tz = —0an2X2, -y
IWVn(x) _ 4 3 ann+bnnk121 3
ox = brnxy + 4bpy, T
3 (ann+bank, 2 2 2
+3bpy 267 X + (@pn + bpnki)xn

The Lyapunov function from (11) can be represented in
scalar form:

2
_1 5 3 ag+biik? 4 3| (aj1+by k2 3
V(x) = gb11x1 + byq ,—Zbu x1 + by o, ) X +

1 2y,2 _ 1 2 _ 1 2 1 2 _ 1 2
E(au + by ki)xg — 302Xy T Q13X — T S QinXp — 5 A1 X)) —
2
1 3 [ag,+byk? 3| (az,+byok2
— e Shyyxs + by, |22yt 4+ by, (—“ = 2) x5+
5 2b,, 2b,,
1 2y,2 _ 1 2 1 2 1 2
E(azz + byzk3)x; T3 Q23X3 T T S lopXy T T S Ana Xy

1 1 3 |ann+bpnks
_anzxzz_""l'_bnnx‘rsl"'bnn Mx;;_,_
2 5 2bpn

3| fapn bk 2 1
bnn (Tnn) X% + 2 (ann + bnnkrzl)xrzz(lz)

Potential function (12) can be reduced to the square form
[17] by Morse lemma:

1 1
V(x) = ;(an + by kf — azq — - — @ )xf + S (az + by k3 —
1
Ay = — anz)x% +ot E(ann + bnnk% —Qip —Qyp — "
an,n—l)xrzz(l3)

From (13), we obtain the conditions for the existence of the
Lyapunov vector function in the form:

l(an + b1k} — a1 — az; — =Gy >0

Ay + byok3 — a1y — A3y — =+ = Qpp >0

4' azz + b33k§ — Q3 —Qy3 — - —ap3 >0 (14)
kann + bnnkrzl —Qup —Ayp — "~ App-1 >0

The control system (3), built in the class of two-parameter
structurally stable mappings, will be stable in an infinitely
wide range of indefinite parameters of the control object k?
and a;;(i = 1,2,...,n). The stationary state (18) exists and is
stable when the uncertain parameters of the object change in
the region (14), and the stationary state (5) appear when the
state (4) becomes unstable and they do not exist
simultaneously. Stationary state (5) is a periodically robustly
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stable when the system of inequalities (14) is satisfied, i.e.
system (3) is a control system with an increased potential for
robust stability [11]-[13].

B. System with the Desired Transient Processes

Let us have some system with the desired transient
processes, obtained on the basis of a simulation experiment on
the system model:

(551 = _b11xf - bnd%xlz + b11d%x1 +
| +a12x2 + -+ A1nXn

! Xy = Gp1%1—byox7 — bypdyxg +

{ +b22d§X2 +"'+a2nxn (15)
| Xp = Ap1Xq + QpaXy + oo —

k _bnnXg - bnnd%x‘rzl + bnndrzlxn

The problem is to determine the coefficients of a controller
with an increased potential for robust stability (elements
diz,i =1,...,n) and such that the coefficients of the elements
of the closed-loop system had a given value d?.

Let us investigate systems with given values of the
coefficients diz,i =1,..,n, using the gradient-velocity
method of the Lyapunov vector function and show that system
(15) is a control system with an increased potential of
aperiodic robust stability.

The stationary state of system (15) is

Xt =0,x3,=0,..,xk, =0 (16)
Other stationary states of system (15) are:
2,3 3 di2 .
X =& - U= 1,..,n 17)

The study of the stability of stationary states (16) and (17)
is carried out by the gradient-velocity method of the Lyapunov
vector function [11], [19].

From (15) we determine the components of the gradient

vector from the Lyapunov vector function V(x)=
(V1 (xqy ooy X))y oy Vi (g, v, X))
Wi (x) _ 4 1,2 2
o, by1x1 + by dixy — bydixy,
av(x) _ avi(x) _ )
o, = M2z e T = = A
Wp(x) _ 4 1,2 2
ox, bayx3 + byadyxs — bypdix,,
a0 _ a0 _ _ (18)
o, = 021X T = ~Aondn;
V() v, (o)
67;1 = —Qn1X1, 37;2 = —An2X2) ey
Wn(x) _ 4 1,2 2
Z;;n = bunXn + bundnxi — bundnxy

From the components of the gradient vector, of the
Lyapunov vector function (18), we can construct the
Lyapunov vector function in scalar form [11].

_1 5,1 1,3 _1 2,2 1 2 _1 2
V(x) = Ebllxl +§b11d1x1 _§b11d1x1 T3 GXy T 13Xy T
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1 2 _1 2,1 5,1 1,3 _1 2,2 _1 2
3 QnXn — 5 A21 X1 +gbzzx2 +§b22d2x2 _Ebzzdzxz T3 03X3 T T

1 1 1 1 1 1
2 2 2 2 5 1,3
;aann -t ;anlxl - ;anzxz - Ean3x3 -t gbrmxn + ;bnndnxn -

> band2x3(19)

The conditions for the positive definiteness of the function
V(x) from (19) are not obvious; therefore, we use the Morse
lemma from catastrophe theory [17], in the vicinity of the
stationary state (17) can be represented in the form of a
quadratic form:

V(x) ~ _é(bud% +Gyp + o+ Ang)xf _%(an + bypdd + o+ ayp)xi —

- %(aln ta, + t bnndrzl)xfl (20)

Conditions for the existence of the Lyapunov vector

function, i.e. the positive definiteness of the quadratic form
(20) is determined by the inequalities:

(—(b11df + apy +ag; + -+ ap) >0
4' @z + bypd? + Gy + - + @py) > 0
|

21)

—(a3 +az; + b33d3 ++a,) >0

—(ay, +ax, + a3n 4 bprd?) >0

The region of aperiodic robust stability of the stationary
state (16) of system (15) is determined by the system of
inequalities (21).

The stability of the stationary state (17) of system (15) is
investigated by the gradient-velocity methods of the Lyapunov
vector function [11], [19]-[21]. For this equation of state (15)
is represented in deviations from the steady state (17) [11]:

3 [q2 3| rq2y2
= —byyx} — ‘“’11\E_1x13 - 3b111I(71) xf -

—by1d?x; + a1pXy + Ay3x3 + o+ Qi

3 g2 3[ g2\ 2
V— 4 2,3 2 2
%3 = —bgx; — 4bzz,’7x2 —3bas (7) X2 —

—bypd3x, + Ap Xq + Ap3xz + 0 + AppXy

(22)

= AniXp + ApaXp + nnxn -
—4by,, / X3 — 3by, / xn bpnd2x,

The components of the gradient vector for the Lyapunov
vector function are determined from (22):

vy (x)
alx = by, xt +4b11\[_ +

+3by, /( ) X2 + by d3x,,

vy (x) vy (x)
— = —Qq2X3, e,
0x, 1272 dxp

AV, (x) d
azx = byyxs +4b22\F x5+

= —QinXn;

+3by, /( ) X2 + byyd?x,, (23)
AV, (x) V(%)
az_xl = —A1%q, ain = —QnXn;
e e
Tox, I 7 = TnaXas

W (x)
a’;n = b Xt + 4bnn\[7xn +

3| () 22 + bydix,
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From (23) we obtain the Lyapunov vector function in scalar
form:

1 5 3laf 4 3 d% a1 2,2 _1 2
V(x) = —b11x1 +byy [5x0 + by () %5+ S bnding —Zax; —
e _alnxn - —a21x1 +: bzzxz + b221 xz + bzz" x2

bzzdzxzz - ‘a23x3 - _aann - _anlxl - _an2x2
nnxn + bnn, " + leTl\ 3 + bnnd2 (24)

From (24) the positive or negative definiteness of the
Lyapunov function is not obvious; therefore, we use the Morse
lemma from catastrophe theories [17] and obtain

1 2
a,3x
7 d13X3

V() ~ 5 (byydf —ay —

1
anz)x§ +et 5(_a1n — Qzn

“ = ap)xf + %(_au +bypdf — =
-t bnnd'rzl)xrzt(zs)

The positive definiteness conditions for the quadratic form
(25) are determined by the system of inequalities:

fb11d1 — 0y — Az~ —ap; >0

I bzzdz —Qyp — Az~ — Ay >0

4 b33d3 a3 — azz — — ans >0 (26)
I

kb —Qyp = — Q1 >0

System (22) will be aperiodically robust stable within an
infinitely wide range of variation of parameters d,-z, i=1, ..., n,
i.e. is a system with an increased potential for robust stability.

Comparing the left-hand sides of inequalities (9) and (21) or
(14) and (26), we obtain

2 _ g2 _ %
(ki =df -2,
2 _ g2 a
Jid =d3-32, @7
I .........
kk%=d%—%.

Thus, for a completely controllable linear plant with a
control law in the class of two-parameter structurally stable
mappings, a simple solution to the problem of synthesis of
control systems for unstable and deterministic chaotic
processes is obtained.

III.

Chaotic and unstable systems usually represent a class of
uncertainty models. Stability under uncertainty is understood
as robust stability. When the conditions of robust stability are
violated, a regime of deterministic chaos and instability is
generated in the system. Under conditions of significant
uncertainty, the synthesis of a control system in the class of
two-parameter structurally stable mappings is one of the main
factors that guarantee the control system protection from the
regime of deterministic chaos and instability.

The existing methods of model control and frequency
methods solve the problem of synthesizing only linear control
systems of low order and small dimension. This requires

CONCLUSION
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complex and ambiguous calculations of the eigenvalues and
eigenfunctions of the control object, as well as direct and
inverse canonical transformations.

The gradient-velocity method of the Lyapunov vector
function allows to solve the problem of synthesizing an
aperiodic robust stable nonlinear system of the high-order.
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