Search results for: Iron and Steel Wastes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1164

Search results for: Iron and Steel Wastes

954 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution lead to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: Heat transfer coefficient, numerical analysis, oxide layer, spray cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2922
953 Structural Cost of Optimized Reinforced Concrete Isolated Footing

Authors: Mohammed S. Al-Ansari

Abstract:

This paper presents an analytical model to estimate the cost of an optimized design of reinforced concrete isolated footing base on structural safety. Flexural and optimized formulas for square and rectangular footingare derived base on ACI building code of design, material cost and optimization. The optimization constraints consist of upper and lower limits of depth and area of steel. Footing depth and area of reinforcing steel are to be minimized to yield the optimal footing dimensions. Optimized footing materials cost of concrete, reinforcing steel and formwork of the designed sections are computed. Total cost factor TCF and other cost factors are developed to generalize and simplify the calculations of footing material cost. Numerical examples are presented to illustrate the model capability of estimating the material cost of the footing for a desired axial load.

Keywords: Footing, Depth, Concrete, Steel, Formwork, Optimization, Material cost, Cost Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4656
952 Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel

Authors: K. Krishnaprasad, Raghu V. Prakash

Abstract:

Constant amplitude fatigue crack growth (FCG) tests were performed on dissimilar metal welded plates of Type 316L Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The plates were welded by TIG welding using SS E309 as electrode. FCG tests were carried on the Side Edge Notch Tension (SENT) specimens of 5 mm thickness, with crack initiator (notch) at base metal region (BM), weld metal region (WM) and heat affected zones (HAZ). The tests were performed at a test frequency of 10 Hz and at load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with stress ratio for weld metals and base metals, where as in case of HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of stainless steel was found to be lowest at low and high ΔK. At intermediate ΔK, WM showed the lowest FCG rate. CS showed higher crack growth rate at all ΔK. However, the scatter band of data was found to be narrow. Fracture toughness (Kc) was found to vary in different locations of weldments. Kc was found lowest for the weldment and highest for HAZ of stainless steel. A novel method of characterizing the FCG behavior using an Infrared thermography (IRT) camera was attempted. By monitoring the temperature rise at the fast moving crack tip region, the amount of plastic deformation was estimated.

Keywords: Dissimilar metal weld, Fatigue Crack Growth, fracture toughness, Infrared thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2855
951 The Effect of Interlamellar Distance in Pearlite on CGI Machining

Authors: Anders Berglund, Cornel Mihai Nicolescu, Henrik Svensson

Abstract:

Swedish truck industry is investigating the possibility for implementing the use of Compacted Graphite Iron (CGI) in their heavy duty diesel engines. Compared to the alloyed gray iron used today, CGI has superior mechanical properties but not as good machinability. Another issue that needs to be addressed when implementing CGI is the inhomogeneous microstructure when the cast component has different section thicknesses, as in cylinder blocks. Thinner sections results in finer pearlite, in the material, with higher strength. Therefore an investigation on its influence on machinability was needed. This paper focuses on the effect that interlamellar distance in pearlite has on CGI machinability and material physical properties. The effect of pearlite content and nodularity is also examined. The results showed that interlamellar distance in pearlite did not have as large effect on the material physical properties or machinability as pearlite content. The paper also shows the difficulties of obtaining a homogeneous microstructure in inhomogeneous workpieces.

Keywords: Compacted graphite iron (CGI), machinability, microstructure, milling, interlamellar distance in pearlite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
950 Determination of Some Biochemical Parameters in Women during the First Trimester of Pregnancy (Normal Pregnancy and Missed Miscarriage)

Authors: Yahia M., Chaoui N., Chaouch A., Massinissa Yahia

Abstract:

Our study was designed to determine the metabolic  changes of some biochemical parameters (cholesterol, triglyceride,  Iron, uric acid, Urea and folic acid) and highlight their changes in 57  women of the region Batna, during the first trimester of pregnancy.  This practical work was done with 27 women with missed  miscarriage, compared with 30 control subjects of normal pregnant  women. The assay results revealed a highly significant difference (P  = 0.0006) between the two groups in serum iron (64.00 vs 93.54) and  in the rate of folate (6.70 vs 9.22) (P <0.001) but no difference was  found regarding the rate of Ca (9.69 vs 10.20), urea (0.19 vs 0.17),  UA (33.96 vs 32.76), CH (1.283 vs 1.431), and TG (0.8852 vs  0.8290). The present study indicates that iron deficiency and folate  are associated with missed miscarriage, but no direct  pathophysiological link has been determined. Further in-depth studies  are needed to determine the exact mechanism by which these deficits  lead to a missed miscarriage.

Keywords: Biochemical parameters, pregnant women, missed miscarriage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
949 Fundamental Research on Factors Affecting the Under-Film Corrosion Behavior of Coated Steel Members

Authors: T. Sakamoto, S. Kainuma

Abstract:

Firstly, in order to examine the influence of the remaining amount of the rust on the coating film durability, the accelerated deterioration tests were carried out. In order to prepare test specimens, uncoated steel plates were corroded by the Salt Spray Test (SST) prior to the accelerated deterioration tests, and then the prepared test specimens were coated by epoxy resin and phthalic acid resin each of which has different gas-barrier performance. As the result, it was confirmed that the under-film corrosion occurred in the area and the adjacency to great quantities of salt exists in the rust, and did not occurred in the specimen which was applied the epoxy resin paint after the surface preparation by the power tool. Secondly, in order to clarify the influence of the corrosive factors on the coating film durability, outdoor exposure tests were conducted for one year on actual steel bridge located at a coastal area. The tests specimens consist of coated corroded plates and the uncoated steel plates, and they were installed on the different structural members of the bridge for one year. From the test results, the uncoated steel plates which were installed on the underside of the member are easily corrosive and had highly correlation with the amount of salt in the rust. On the other hand, the most corrosive under-film steel was the vertical surface of the web plate. Thus, it was confirmed that under-film corrosion rate was not match with corrosion rate of the uncoated steel. Consequently, it is estimated that the main factors of under-film corrosion are gas-barrier property of coating film and corrosive factors such as water vapor and temperature. The salt which significantly corrodes the uncoated steel plate is not directly related to the under-film corrosion.

Keywords: Accelerated deterioration test, Coating durability, Environmental factor, Under-film corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
948 Redundancy in Steel Frames with Masonry Infill Walls

Authors: Hosein Ghaffarzadeh, Robab Naseri Ghalghachi

Abstract:

Structural redundancy is an interesting point in seismic design of structures. Initially, the structural redundancy is described as indeterminate degree of a system. Although many definitions are presented for redundancy in structures, recently the definition of structural redundancy has been related to the configuration of structural system and the number of lateral load transferring directions in the structure. The steel frames with infill walls are general systems in the constructing of usual residential buildings in some countries. It is obviously declared that the performance of structures will be affected by adding masonry infill walls. In order to investigate the effect of infill walls on the redundancy of the steel frame which constructed with masonry walls, the components of redundancy including redundancy variation index, redundancy strength index and redundancy response modification factor were extracted for the frames with masonry infills. Several steel frames with typical storey number and various numbers of bays were designed and considered. The redundancy of frames with and without infill walls was evaluated by proposed method. The results showed the presence of infill causes increase of redundancy.

Keywords: Structural redundancy, Masonry infill walls frames.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
947 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra-High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra-high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined that the fiber orientation was not significantly different. It is believed that the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting that a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: Fiber orientation, reinforced ultra-high performance concrete beams, shear, transverse steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142
946 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

Authors: Mohamed Omar

Abstract:

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.

Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
945 An Algorithm for Detecting Seam Cracks in Steel Plates

Authors: Doo-chul Choi, Yong-Ju Jeon, Jong Pil Yun, Sung Wook Yun, Sang Woo Kim

Abstract:

In this study, we developed an algorithm for detecting seam cracks in a steel plate. Seam cracks are generated in the edge region of a steel plate. We used the Gabor filter and an adaptive double threshold method to detect them. To reduce the number of pseudo defects, features based on the shape of seam cracks were used. To evaluate the performance of the proposed algorithm, we tested 989 images with seam cracks and 9470 defect-free images. Experimental results show that the proposed algorithm is suitable for detecting seam cracks. However, it should be improved to increase the true positive rate.

Keywords: Defect detection, Gabor filter, machine vision, surface inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
944 The Effect of the Direct Contact Heat Exchanger on Steam Power Plant

Authors: Mohamed A. Elhaj, Salahedin A. Aljahime

Abstract:

An actual power plant, which is the power plant of Iron and Steel Factory at Misurata city in Libya , has been modeled using Matlab in order to compare its results to the actual results of the actual cycle. This paper concentrates on two factors: a- The comparison between exergy losses in the actual cycle and the modeled cycle. b- The effect of extracting pressure on temperature water at boiler inlet. Closed heat exchangers used in this plant have been substituted by open heat exchangers in the current study of the modeled power plant and the required changes in the pressure have been considered. In the following investigation the two points mentioned above are taken in consideration.

Keywords: Steam Power Plant, Contact Heat exchanger, Exergy, Cycle Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
943 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials - Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the  reinforcement bars of reinforced concrete members using PZTs is  presented. The damage can be the result of excessive elongation of  the steel bar due to steel yielding or due to local steel corrosion. In  both cases the damage is simulated by considering reduced diameter  of the rebar along the damaged part of its length. An integration  approach based on both electromechanical admittance methodology  and guided wave propagation technique is used to evaluate the  artificial damage on the examined longitudinal steel bar. Two  actuator PZTs and a sensor PZT are considered to be bonded on the  examined steel bar. The admittance of the Sensor PZT is calculated  using COMSOL 3.4a. Fast Furrier Transformation for a better  evaluation of the results is employed. An effort for the quantification  of the damage detection using the root mean square deviation  (RMSD) between the healthy condition and damage state of the  sensor PZT is attempted. The numerical value of the RSMD yields a  level for the difference between the healthy and the damaged  admittance computation indicating this way the presence of damage  in the structure. Experimental measurements are also presented.

 

Keywords: Concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
942 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel

Authors: K. Rattanachan

Abstract:

In sheet metal forming process, raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloyed, which have the different unit cell, mechanical property and chemical composition. They were forming into cone shape specimens having 100 mm diameter with different wall’s incline angle: 90o, 75o and 60o. The investigation was continued until the specimens formed surface facture. The experimental result showed that the smaller the wall incline angle higher the formability with the both materials. The formability limit of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 has higher formability than SUS 304. This result can be used as the initial data in designing the single point incremental forming parts.

Keywords: NC incremental forming, Single point incremental forming, Wall incline angle, Formability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
941 Comparative DNA Binding of Iron and Manganese Complexes by Spectroscopic and ITC Techniques and Antibacterial Activity

Authors: Maryam Nejat Dehkordi, Per Lincoln, Hassan Momtaz

Abstract:

Interaction of Schiff base complexes of Iron and Manganese: Iron [N, N’ Bis (5- (triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) chloride, [Fe Salen]Cl; Manganese [N, N’ Bis (5- (triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) acetate, were investigated by spectroscopic and isothermal titration calorimetry techniques (ITC). The absorbance spectra of complexes have shown hyper and hypochromism in the presence of DNA that is indication of interaction of complexes with DNA. The linear dichroism (LD) measurements confirmed the bending of DNA in the presence of complexes. Furthermore, Isothermal titration calorimetry experiments approved that complexes bound to DNA on the base of both electrostatic and hydrophobic interactions. More, ITC profile exhibits the existence of two binding phases for the complexes. Antibacterial activity of ligand and complexes were tested in vitro to evaluate their activity against the gram positive and negative bacteria.

Keywords: Schiff base complexes, Linear dichroism (LD), Isothermal titration calorimetry (ITC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555
940 Study of Equilibrium and Mass Transfer of Co- Extraction of Different Mineral Acids with Iron(III) from Aqueous Solution by Tri-n-Butyl Phosphate Using Liquid Membrane

Authors: Diptendu Das, Vikas Kumar Rahi, V. A. Juvekar, R. Bhattacharya

Abstract:

Extraction of Fe(III) from aqueous solution using Trin- butyl Phosphate (TBP) as carrier needs a highly acidic medium (>6N) as it favours formation of chelating complex FeCl3.TBP. Similarly, stripping of Iron(III) from loaded organic solvents requires neutral pH or alkaline medium to dissociate the same complex. It is observed that TBP co-extracts acids along with metal, which causes reversal of driving force of extraction and iron(III) is re-extracted back from the strip phase into the feed phase during Liquid Emulsion Membrane (LEM) pertraction. Therefore, rate of extraction of different mineral acids (HCl, HNO3, H2SO4) using TBP with and without presence of metal Fe(III) was examined. It is revealed that in presence of metal acid extraction is enhanced. Determination of mass transfer coefficient of both acid and metal extraction was performed by using Bulk Liquid Membrane (BLM). The average mass transfer coefficient was obtained by fitting the derived model equation with experimentally obtained data. The mass transfer coefficient of the mineral acid extraction is in the order of kHNO3 = 3.3x10-6m/s > kHCl = 6.05x10-7m/s > kH2SO4 = 1.85x10-7m/s. The distribution equilibria of the above mentioned acids between aqueous feed solution and a solution of tri-n-butyl-phosphate (TBP) in organic solvents have been investigated. The stoichiometry of acid extraction reveals the formation of TBP.2HCl, HNO3.2TBP, and TBP.H2SO4 complexes. Moreover, extraction of Iron(III) by TBP in HCl aqueous solution forms complex FeCl3.TBP.2HCl while in HNO3 medium forms complex 3FeCl3.TBP.2HNO3

Keywords: Bulk Liquid Membrane (BLM) Transport, Iron(III) extraction, Tri-n-butyl Phosphate, Mass Transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
939 QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance

Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison

Abstract:

Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.

Keywords: QCM-D, PEG, stainless steel, β-casein, lysozyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
938 Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs

Authors: M. B. Limooei, Hadi Ebrahimifar, Sh. Hosseini

Abstract:

Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.

Keywords: Oxidation resistance, full cell, Cobalt coating, ferritic stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
937 Fatigue Strength of S275 Mild Steel under Cyclic Loading

Authors: T. Aldeeb, M. Abduelmula

Abstract:

This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa.

Keywords: Fatigue life, fatigue strength, finite element analysis, S275 mild steel, scanning electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
936 Effect of Silica Fume on the Properties of Steel-Fiber Reinforced Self-compacting Concrete

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, M. F. Nuruddin, Ali Elheber

Abstract:

Implementing significant advantages in the supply of self-compacting concrete (SCC) is necessary because of the, negative features of SCC. Examples of these features are the ductility problem along with the very high cost of its constituted materials. Silica fume with steel fiber can fix this matter by improving the ductility and decreasing the total cost of SCC by varying the cement ingredients. Many different researchers have found that there have not been enough research carried out on the steel fiber-reinforced self-compacting concrete (SFRSCC) produced with silica fume. This paper inspects both the fresh and the mechanical properties of SFRSCC with silica fume, the fresh qualities where slump flow, slump T50 and V- funnel. While, the mechanical characteristics were the compressive strength, ultrasound pulse velocity (UPV) and elastic modulus of the concrete samples. The experimental results have proven that steel fiber can enhance the mechanical features. In addition, the silica fume within the entire hybrid mix may possibly adapt the fiber dispersion and strengthen deficits due to the fibers. It could also improve the strength plus the bond between the fiber and the matrix with a dense calcium silicate-hydrate gel in SFRSCC. The concluded result was predicted using linear mathematical models and was found to be in great agreement with the experimental results.

Keywords: Self-compacting concrete, silica fume, steel fiber, fresh and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
935 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fibers content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; fibers volume fraction including 0, 0.5%, 0.76% and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fibers content added; whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fibers content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: Concrete, flexural strength, toughness, steel fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
934 Design of Stainless Steel Implant for Fractured Distal Femur

Authors: Abhishek Soni, Bhagat Singh

Abstract:

Perfect restoration of fractured distal femur has been a challenging task for the medical practitioners. In the present study, model of a fractured bone has been created using the scan data of the damaged bone. Thereafter, customized implant of Stainless Steel (SS-316L) for this fractured femur bone is modeled using the reverse engineering approach. Clinical set-up is prepared by assembling all the models together. Stress and deformation analysis of this clinical set-up has been performed in order to check the load bearing capacity and intactness of the joint. From this analysis, it has been inferred that the stresses and deformation developed due to the static load of the person is within the permissible limits.

Keywords: Biomechanical evaluations, customized implant, reverse engineering, stainless steel alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
933 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
932 Behavior of Generated Gas in Lost Foam Casting

Authors: M. Khodai, S. M. H. Mirbagheri

Abstract:

In the Lost Foam Casting process, melting point temperature of metal, as well as volume and rate of the foam degradation have significant effect on the mold filling pattern. Therefore, gas generation capacity and gas gap length are two important parameters for modeling of mold filling time of the lost foam casting processes. In this paper, the gas gap length at the liquidfoam interface for a low melting point (aluminum) alloy and a high melting point (Carbon-steel) alloy are investigated by the photography technique. Results of the photography technique indicated, that the gas gap length and the mold filling time are increased with increased coating thickness and density of the foam. The Gas gap lengths measured in aluminum and Carbon-steel, depend on the foam density, and were approximately 4-5 and 25-60 mm, respectively. By using a new system, the gas generation capacity for the aluminum and steel was measured. The gas generation capacity measurements indicated that gas generation in the Aluminum and Carbon-steel lost foam casting was about 50 CC/g and 3200 CC/g polystyrene, respectively.

Keywords: gas gap, lost foam casting, photographytechnique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
931 Reducing Greenhouse Gas Emissions by Recyclable Material Bank Project of Universities in Central Region of Thailand

Authors: Ronbanchob Apiratikul

Abstract:

This research studied recycled waste by the Recyclable Material Bank Project of 4 universities in the central region of Thailand for the evaluation of reducing greenhouse gas emissions compared with landfilling activity during July 2012 to June 2013. The results showed that the projects collected total amount of recyclable wastes of about 911,984.80 kilograms. Office paper had the largest amount among these recycled wastes (50.68% of total recycled waste). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables, and metal, respectively. The project reduced greenhouse gas emissions equivalent to about 2814.969 metric tons of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gas emissions is office paper which is 70.16% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metals, mixed recyclables, and glass, respectively.

Keywords: Recycling, garbage bank, waste management, recyclable wastes, greenhouse gasses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
930 Vibration Damping of High-Chromium Ferromagnetic Steel

Authors: Satish BM, Girish BM , Mahesh K

Abstract:

The aim of the present work is to study the effect of annealing on the vibration damping capacity of high-chromium (16%) ferromagnetic steel. The alloys were prepared from raw materials of 99.9% purity melted in a high frequency induction furnace under high vacuum. The samples were heat-treated in vacuum at various temperatures (800 to 1200ºC) for 1 hour followed by slow cooling (120ºC/h). The inverted torsional pendulum method was used to evaluate the vibration damping capacity. The results indicated that the vibration damping capacity of the alloys is influenced by annealing and there exists a critical annealing temperature after 1000ºC. The damping capacity increases quickly below the critical temperature since the magnetic domains move more easily.

Keywords: Vibration, Damping, Ferromagnetic, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
929 Immobilization of Simulated High Level Nuclear Wastes with Li2O-CeO2-Fe2O3-P2O5 Glasses

Authors: Toshinori Okura, Naoya Yoshida

Abstract:

The leaching behavior and structure of Li2O-CeO2- Fe2O3-P2O5 glasses incorporated with simulated high level nuclear wastes (HLW) were studied. The leach rates of gross and each constituent element were determined from the total weight loss of the specimen and the leachate analyses by inductively coupled argon plasma spectroscopy (ICP). The gross leach rate of the 4.5Li2O- 9.7CeO2-34.7Fe2O3-51.5P2O5 glass waste form containing 45 mass% simulated HLW is of the order of 10

Keywords: FT-IR spectra, Leach rates, Li2O-CeO2-Fe2O3-P2O5 glasses, Nuclear waste immobilization, Thermal properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
928 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: Differential, spider gear, ANSYS, structural steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
927 Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnect Coatings

Authors: S. N. Hosseini, M. H. Enayati, F. Karimzadeh, N. M. Sammes

Abstract:

The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcination is described herein. The samples were characterized using X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the asprepared powders at 800 and 1000°C for 5 hours showed that the G/N ratio of 2 results in the formation of the desired copper spinel single phase at both calcination temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decompose to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react with each other to form a copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively.

Keywords: SOFC interconnect coatings, Copper ferrite, Spinels, Electrical conductivity, Glycine–nitrate process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
926 Comparison of Diagnostic Performance of Soluble Transferrin Receptor and Soluble Transferrin Receptor-Ferritin Index Tests in the Diagnosis of Iron Deficiency Anemia

Authors: Hafiz Muhammad Obaid, Bilal Wajid, Nauman Haider, Muhammad Zafrullah

Abstract:

In this research article, a comprehensive analysis is performed to compare the diagnostic performance of soluble transferrin receptor (sTfR) and sTfR/log ferritin index tests in the differential diagnosis of iron deficiency anemia (IDA) and anemia of chronic disease (ACD). The analysis is performed for both sTfR and sTfR/log ferritin index using a set of 11 studies. The overall odds ratios for sTfR and sTfR/log ferritin index were 36.79 and 119.32 respectively, using 95% confidence interval. The relative sensitivity, specificity. positive likelihood ratio (LR) and negative LR values for sTfR in relation to sTfR/log ferritin index were 81% vs 85%, 84% vs 93%, 6.31 vs 13.95 and 0.18 vs 0.14 respectively. The summary receiver operating characteristic (SROC) curves are also plotted for both sTfR and sTfR/log ferritin index. The area under SROC curves for sTfR and sTfR/log ferritin index was found to be 0.9296 and 0.9825 respectively. Although both tests are useful, the sTfR/log ferritin index seems to be more effective when compared with sTfR.

Keywords: Anemia, sTfR, iron deficiency, ferritin, odds ratio, sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
925 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5254