Search results for: Hydraulic Pressure Controller/Calibrator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2337

Search results for: Hydraulic Pressure Controller/Calibrator

2307 LQR Based PID Controller Design for 3-DOF Helicopter System

Authors: Santosh Kr. Choudhary

Abstract:

In this article, LQR based PID controller design for 3DOF helicopter system is investigated. The 3-DOF helicopter system is a benchmark laboratory model having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. This article first presents the mathematical model of the 3DOF helicopter system and then illustrates the basic idea and technical formulation for controller design. The paper explains the simple approach for the approximation of PID design parameters from the LQR controller gain matrix. The simulation results show that the investigated controller has both static and dynamic performance, therefore the stability and the quick control effect can be obtained simultaneously for the 3DOF helicopter system.

Keywords: 3DOF helicopter system, PID controller, LQR controller, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5177
2306 DMC with Adaptive Weighted Output

Authors: Ahmed Abbas, M.R. M Rizk, Mohamed El-Sayed

Abstract:

This paper presents a new adaptive DMC controller that improves the controller performance in case of plant-model mismatch. The new controller monitors the plant measured output, compares it with the model output and calculates weights applied to the controller move. Simulations show that the new controller can help improve control performance and avoid instability in case of severe model mismatches.

Keywords: Adaptive control, dynamic matrix control, DMC, model predictive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
2305 Design of PI Controller Using MRAC Techniques For Couple-Tanks Process

Authors: Boonsrimuang P., Numsomran A., Kangwanrat S.

Abstract:

The typical coupled-tanks process that is TITO plant has the difficulty in controller design because changing of system dynamics and interacting of process. This paper presents design methodology of auto-adjustable PI controller using MRAC technique. The proposed method can adjust the controller parameters in response to changes in plant and disturbance real time by referring to the reference model that specifies properties of the desired control system.

Keywords: PI controller, MRAC, Couple-tanks process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
2304 An Example of Open Robot Controller Architecture - For Power Distribution Line Maintenance Robot System -

Authors: Yingxin He, Kyouichi Tatsuno

Abstract:

In this paper, we propose an architecture for easily constructing a robot controller. The architecture is a multi-agent system which has eight agents: the Man-machine interface, Task planner, Task teaching editor, Motion planner, Arm controller, Vehicle controller, Vision system and CG display. The controller has three databases: the Task knowledge database, the Robot database and the Environment database. Based on this controller architecture, we are constructing an experimental power distribution line maintenance robot system and are doing the experiment for the maintenance tasks, for example, “Bolt insertion task".

Keywords: Robot controller, Software library, Maintenance robot, Robot language, Agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
2303 Low Pressure Binder-Less Densification of Fibrous Biomass Material using a Screw Press

Authors: Tsietsi J. Pilusa, Robert Huberts, Edison Muzenda

Abstract:

In this study, the theoretical relationship between pressure and density was investigated on cylindrical hollow fuel briquettes produced of a mixture of fibrous biomass material using a screw press without any chemical binder. The fuel briquettes were made of biomass and other waste material such as spent coffee beans, mielie husks, saw dust and coal fines under pressures of 0.878-2.2 Mega Pascals (MPa). The material was densified into briquettes of outer diameter of 100mm, inner diameter of 35mm and 50mm long. It was observed that manual screw compression action produces briquettes of relatively low density as compared to the ones made using hydraulic compression action. The pressure and density relationship was obtained in the form of power law and compare well with other cylindrical solid briquettes made using hydraulic compression action. The produced briquettes have a dry density of 989 kg/m3 and contain 26.30% fixed carbon, 39.34% volatile matter, 10.9% moisture and 10.46% ash as per dry proximate analysis. The bomb calorimeter tests have shown the briquettes yielding a gross calorific value of 18.9MJ/kg.

Keywords: Bio briquettes, biomass fuel, coffee grounds, fuelbriquettes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
2302 Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems

Authors: Sana Testouri, Karim Saadaoui, Mohamed Benrejeb

Abstract:

This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.

Keywords: AQM, first-order controller, time delay, stability, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
2301 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow

Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam

Abstract:

Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.

Keywords: Water hammer, hydraulic transient, pipe systems, characteristics method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
2300 A Comparative Study of P-I, I-P, Fuzzy and Neuro-Fuzzy Controllers for Speed Control of DC Motor Drive

Authors: S.R. Khuntia, K.B. Mohanty, S. Panda, C. Ardil

Abstract:

This paper presents a comparative study of various controllers for the speed control of DC motor. The most commonly used controller for the speed control of dc motor is Proportional- Integral (P-I) controller. However, the P-I controller has some disadvantages such as: the high starting overshoot, sensitivity to controller gains and sluggish response due to sudden disturbance. So, the relatively new Integral-Proportional (I-P) controller is proposed to overcome the disadvantages of the P-I controller. Further, two Fuzzy logic based controllers namely; Fuzzy control and Neuro-fuzzy control are proposed and the performance these controllers are compared with both P-I and I-P controllers. Simulation results are presented and analyzed for all the controllers. It is observed that fuzzy logic based controllers give better responses than the traditional P-I as well as I-P controller for the speed control of dc motor drives.

Keywords: Proportional-Integral (P-I) controller, Integral- Proportional (I-P) controller, Fuzzy logic control, Neuro-fuzzy control, Speed control, DC Motor drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
2299 Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System

Authors: Amil Daraz, Suheel Abdullah Malik, Tahir Saleem, Sajid Ali Bhati

Abstract:

In this paper, Integral Proportional (I-P) controller is employed for superheated steam temperature control system. The Ziegler-Nichols (Z-N) method is used for the tuning of I-P controller. The performance analysis of Z-N based I-P controller is assessed on superheated steam system of 500-MW boiler. The comparison of transient response parameters such as rise time, settling time, and overshoot is made with Z-N based Proportional Integral (PI) controller. It is observed from the results that Z-N based I-P controller completely eliminates the overshoot in the output response.

Keywords: Superheated steam, process reaction curve, PI and I-P controller, Ziegler-Nichols tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
2298 Optimal Controller Design for Linear Magnetic Levitation Rail System

Authors: Tooraj Hakim Elahi, Abdolamir Nekoubin

Abstract:

In many applications, magnetic suspension systems are required to operate over large variations in air gap. As a result, the nonlinearities inherent in most types of suspensions have a significant impact on performance. Specifically, it may be difficult to design a linear controller which gives satisfactory performance, stability, and disturbance rejection over a wide range of operating points. in this paper an optimal controller based on discontinuous mathematical model of the system for an electromagnetic suspension system which is applied in magnetic trains has been designed . Simulations show that the new controller can adapt well to the variance of suspension mass and gap, and keep its dynamic performance, thus it is superior to the classic controller.

Keywords: Magnetic Levitation, optimal controller, mass and gap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164
2297 A Fixed Band Hysteresis Current Controller for Voltage Source AC Chopper

Authors: K. Derradji Belloum, A. Moussi

Abstract:

Most high-performance ac drives utilize a current controller. The controller switches a voltage source inverter (VSI) such that the motor current follows a set of reference current waveforms. Fixed-band hysteresis (FBH) current control has been widely used for the PWM inverter. We want to apply the same controller for the PWM AC chopper. The aims of the controller is to optimize the harmonic content at both input and output sides, while maintaining acceptable losses in the ac chopper and to control in wide range the fundamental output voltage. Fixed band controller has been simulated and analyzed for a single-phase AC chopper and are easily extended to three-phase systems. Simulation confirmed the advantages and the excellent performance of the modulation method applied for the AC chopper.

Keywords: AC chopper, Current controller, Distortion factor, Hysteresis, Input Power Factor, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3537
2296 Response Time Behavior Trends of Proptional, Propotional Integral and Proportional Integral Derivative Mode on Lab Scale

Authors: Syed Zohaib Javaid Zaidi, W. Iqbal

Abstract:

The industrial automation is dependent upon pneumatic control systems. The industrial units are now controlled with digital control systems to tackle the process variables like Temperature, Pressure, Flow rates and Composition.

This research work produces an evaluation of the response time fluctuations for proportional mode, proportional integral and proportional integral derivative modes of automated chemical process control. The controller output is measured for different values of gain with respect to time in three modes (P, PI and PID). In case of P-mode for different values of gain the controller output has negligible change. When the controller output of PI-mode is checked for constant gain, it can be seen that by decreasing the integral time the controller output has showed more fluctuations. The PID mode results have found to be more interesting in a way that when rate minute has changed, the controller output has also showed fluctuations with respect to time.  The controller output for integral mode and derivative mode are observed with lesser steady state error, minimum offset and larger response time to control the process variable.   The tuning parameters in case of P-mode are only steady state gain with greater errors with respect to controller output. The integral mode showed controller outputs with intermediate responses during integral gain (ki).  By increasing the rate minute the derivative gain (kd) also increased which showed the controlled oscillations in case of PID mode and lesser overshoot.

Keywords: Controller Output, P, PI &PID modes, Steady state gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5542
2295 Simulation and Analysis of the Shift Process for an Automatic Transmission

Authors: Kei-Lin Kuo

Abstract:

The automatic transmission (AT) is one of the most important components of many automobile transmission systems. The shift quality has a significant influence on the ride comfort of the vehicle. During the AT shift process, the joint elements such as the clutch and bands engage or disengage, linking sets of gears to create a fixed gear ratio. Since these ratios differ between gears in a fixed gear ratio transmission, the motion of the vehicle could change suddenly during the shift process if the joint elements are engaged or disengaged inappropriately, additionally impacting the entire transmission system and increasing the temperature of connect elements.The objective was to establish a system model for an AT powertrain using Matlab/Simulink. This paper further analyses the effect of varying hydraulic pressure and the associated impact on shift quality during both engagment and disengagement of the joint elements, proving that shift quality improvements could be achieved with appropriate hydraulic pressure control.

Keywords: Automatic transmission, Simulation and analysis, Shift quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4440
2294 Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold

Authors: M. Malek Yarand, H. Saebi Monfared

Abstract:

This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.

Keywords: Mechanical Force Gauge, Mold, Reshaped Fruit, Square Watermelon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3076
2293 Genetic-Fuzzy Inverse Controller for a Robot Arm Suitable for On Line Applications

Authors: Abduladheem A. Ali, Easa A. Abd

Abstract:

The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Geno-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (indirect controller) has two genetic-fuzzy blocks, the first as controller, the second as identifier. The identification method is based on inverse identification technique. The proposed controller it tested in normal and load disturbance conditions.

Keywords: Fuzzy network, genetic algorithm, robot control, online genetic control, parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
2292 Long-Term Deformations of Concrete Structures

Authors: A. Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes consideration of the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: Drying, hydraulic concretes, shrinkage, modeling, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
2291 Intelligent Automatic Generation Control of Two Area Interconnected Power System using Hybrid Neuro Fuzzy Controller

Authors: Sathans, A. Swarup

Abstract:

This paper presents the development and application of an adaptive neuro fuzzy inference system (ANFIS) based intelligent hybrid neuro fuzzy controller for automatic generation control (AGC) of two-area interconnected thermal power system with reheat non linearity. The dynamic response of the system has been studied for 1% step load perturbation in area-1. The performance of the proposed neuro fuzzy controller is compared against conventional proportional-integral (PI) controller, state feedback linear quadratic regulator (LQR) controller and fuzzy gain scheduled proportionalintegral (FGSPI) controller. Comparative analysis demonstrates that the proposed intelligent neuro fuzzy controller is the most effective of all in improving the transients of frequency and tie-line power deviations against small step load disturbances. Simulations have been performed using Matlab®.

Keywords: Automatic generation control, ANFIS, LQR, Hybrid neuro fuzzy controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
2290 H-Infinity Controller Design for the Switched Reluctance Machine

Authors: Siwar Fadhel, Imen Bahri, Man Zhang

Abstract:

The switched reluctance machine (SRM) has undeniable qualities in terms of low cost and mechanical robustness. However, its highly nonlinear character and its uncertain parameters justify the development of complicated controls. In this paper, authors present the design of a robust H-infinity current controller for an 8/6 SRM with taking into account the nonlinearity of the SRM and with rejection of disturbances. The electromagnetic torque is indirectly regulated through the current controller. To show the performances of this control, a robustness analysis is performed by comparing the H-infinity and PI controller simulation results. This comparison demonstrates better performances for the presented controller. The effectiveness and robustness of the presented controller are also demonstrated by experimental tests.

Keywords: Current regulation, experimentation, robust H-infinity control, switched reluctance machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
2289 Optimal Feedback Linearization Control of PEM Fuel Cell

Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh

Abstract:

This paper presents a new method to design nonlinear feedback linearization controller for PEMFCs (Polymer Electrolyte Membrane Fuel Cells). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEMFCs. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEMFC system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA (Non-Dominated Sorting Genetic Algorithm)-II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.

Keywords: Feedback Linearization controller, NSGA, Optimal Control, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
2288 Sizing the Protection Devices to Control Water Hammer Damage

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

The primary objectives of transient analysis are to determine the values of transient pressures that can result from flow control operations and to establish the design criteria for system equipment and devices (such as control devices and pipe wall thickness) so as to provide an acceptable level of protection against system failure due to pipe collapse or bursting. Because of the complexity of the equations needed to describe transients, numerical computer models are used to analyze transient flow hydraulics. An effective numerical model allows the hydraulic engineer to analyze potential transient events and to identify and evaluate alternative solutions for controlling hydraulic transients, thereby protecting the integrity of the hydraulic system. This paper presents the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurs in the transient.

Keywords: Flow Transient, Water hammer, Pipeline System, Surge Tank, Simulation Model, Protection Devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9446
2287 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method

Authors: C. C. Chen, C. M. Chu, C. J. Wang, C. Y. Chen, K. J. Huang

Abstract:

Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.

Keywords: Cesiumiodide, AAO, scintillator, crystal, X-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
2286 A New Self-Tuning Fuzzy PD Controller of a BDFIG for Wind Energy Conversion

Authors: Zoheir Tir, Rachid Abdessemed

Abstract:

This paper presents a new control scheme to control a brushless doubly fed induction generator (BDFIG) using back-to-back PWM converters for wind power generation. The proposed control scheme is a New Self-Tuning Fuzzy Proportional-Derivative Controller (NSTFPDC). The goal of BDFIG control is to achieve a similar dynamic performance to the doubly fed induction generator (DFIG), exploiting the well-known induction machine vector control philosophy. The performance of NSTFPDC controller has been investigated and compared with the two controllers, called Proportional–Integral (PI) and PD-like Fuzzy Logic controller (PD-like FLC) based BDFIG. The simulation results demonstrate the effectiveness and the robustness of the NSTFPDC controller.

Keywords: Brushless Doubly Fed Induction Generator (BDFIG), PI controller, PD-like Fuzzy Logic controller, New Self-Tuning Fuzzy Proportional-Derivative Controller (NSTFPDC), Scaling factor, back-to-back PWM converters, wind energy system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
2285 Fractional Order Feedback Control of a Ball and Beam System

Authors: Santosh Kr. Choudhary

Abstract:

In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.

Keywords: Fractional order calculus, fractional order controller, fractional order system, ball and beam system, PIλDμ controller, modelling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3492
2284 Dynamics of Mini Hydraulic Backhoe Excavator: A Lagrange-Euler (L-E) Approach

Authors: Bhaveshkumar P. Patel, J. M. Prajapati

Abstract:

Excavators are high power machines used in the mining, agricultural and construction industry whose principal functions are digging (material removing), ground leveling and material transport operations. During the digging task there are certain unknown forces exerted by the bucket on the soil and the digging operation is repetitive in nature. Automation of the digging task can be performed by an automatically controlled excavator system, which is not only control the forces but also follow the planned digging trajectories. To develop such a controller for automated excavation, it is required to develop a dynamic model to describe the behavior of the control system during digging operation and motion of excavator with time. The presented work described a dynamic model needed for controller design and which is derived by applying Lagrange-Euler approach. The developed dynamic model is intended for further development of an automated excavation control system for light duty construction work and can be applied for heavy duty or all types of backhoe excavators.

Keywords: Backhoe excavator, controller, digging, excavation, trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4404
2283 Optimal Control for Coordinated Control of SVeC and PSS Damping Controllers

Authors: K. Himaja, T. S. Surendra, S. Tara Kalyani

Abstract:

In this article, Optimal Control for Coordinated Control (COC) of Series Vectorial Compensator (SVeC) and Power System Stabilizer (PSS) in order to damp Low Frequency Oscillations (LFO) is proposed. SVeC is a series Flexible Alternating Current Transmission System (FACTS) device. The Optimal Control strategy based on state feedback control for coordination of PSS and SVeC controllers under different loading conditions has not been developed. So, the Optimal State Feedback Controller (OSFC) for incorporating of PSS and SVeC controllers in COC manner has been developed in this paper. The performance of the proposed controller is checked through eigenvalue analysis and nonlinear time domain simulation results. The proposed Optimal Controller design for the COC of SVeC and PSS results will be analyzed without controller. The comparative results show that Optimal Controller for COC of SVeC and PSSs improve greatly the system damping LFO than without controller.

Keywords: Coordinated control, damping controller, optimal state feedback controller, power system stabilizer, series vectorial compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
2282 PSS and SVC Controller Design by Chaos and PSO Algorithms to Enhancing the Power System Stability

Authors: Saeed jalilzadeh, Mohammad Reza Safari Tirtashi, Mohsen Sadeghi

Abstract:

this paper focuses on designing of PSS and SVC controller based on chaos and PSO algorithms to improve the stability of power system. Single machine infinite bus (SMIB) system with SVC located at the terminal of generator has been considered to evaluate the proposed controllers where both SVC and PSS have the same controller. The coefficients of PSS and SVC controller have been optimized by chaos and PSO algorithms. Finally the system with proposed controllers has been simulated for the special disturbance in input power of generator, and then the dynamic responses of generator have been presented. The simulation results showed that the system composed with recommended controller has outstanding operation in fast damping of oscillations of power system.

Keywords: PSS, CHAOS, PSO, Stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
2281 A New Nonlinear PID Controller and its Parameter Design

Authors: Yongping Ren, Zongli Li, Fan Zhang

Abstract:

A new nonlinear PID controller and its stability analysis are presented in this paper. A nonlinear function is deduced from the similarities between the control effort and the electric-field effect of a capacitor. The conventional linear PID controller can be modified into a nonlinear one by this function. To analyze the stability of the nonlinear PID controlled system, an idea of energy equivalence is adapted to avoid the conservativeness which is usually arisen from some traditional theorems and Criterions. The energy equivalence is naturally related with the conceptions of Passivity and T-Passivity. As a result, an engineering guideline for the parameter design of the nonlinear PID controller is obtained. An inverted pendulum system is tested to verify the nonlinear PID control scheme.

Keywords: Nonlinear PID controller, stability, gain equivalence, dissipative, T-Passivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
2280 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter

Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam

Abstract:

This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however, its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (poleplacement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.

Keywords: Adaptive control, bench-top helicopter, deadbeat, pole-placement, self-tuning control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245
2279 Influence of Hydraulic Hysteresis on Effective Stress in Unsaturated Clay

Authors: Anuchit Uchaipichat

Abstract:

A comprehensive program of laboratory testing on a compacted kaolin in a modified triaxial cell was perform to investigate the influence of hydraulic hysteresis on effective stress in unsaturated soils. The test data are presented on a range of constant suction shear tests along wetting and drying paths. The values of effective stress parameter χ at different matric suction were determined using the test results. The effect of hydraulic hysteresis phenomenon on the effective stress was observed. The values of effective stress parameter χ obtained from the experiments were compared with those obtained from the expressions proposed in literature.

Keywords: Unsaturated soils, Hydraulic hysteresis, Effectivestress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
2278 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules

Authors: Mazidah Tajjudin, Mohd Hezri Fazalul Rahiman, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.

Keywords: PID controller, fractional-order PID controller, PI control tuning, steam temperature control, Ziegler-Nichols tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3405