
 

  
Abstract—This paper presents a Particle Swarm Optimization 

(PSO) method for determining the optimal parameters of a first-order 
controller for TCP/AQM system. The model TCP/AQM is described 
by a second-order system with time delay. First, the analytical 
approach, based on the D-decomposition method and Lemma of 
Kharitonov, is used to determine the stabilizing regions of a first-
order controller. Second, the optimal parameters of the controller are 
obtained by the PSO algorithm. Finally, the proposed method is 
implemented in the Network Simulator NS-2 and compared with the 
PI controller. 

 
Keywords—AQM, first-order controller, time delay, stability, 

PSO. 

I. INTRODUCTION 
URING the last few years, the number of users in internet 
has grown rapidly, which leads problems in network in 

communication (because high packet loss rates, increased 
delays ...), indeed in network, the packet loss indicates 
congestion which happens when the packet flow is greater 
than the link capacity. In fact, the congestion-control 
mechanism becomes indispensable in an over-charged 
network. TCP (Transmission Control Protocol), has been the 
basis of control congestion. It adopts the end-to-end window-
based flow control to avoid congestion [1].  Recently, we 
assist to a growing interest of designing AQM (Active Queue 
Management) using control theory. The goal of AQM is to 
maintain shorter queuing delay and higher throughput by 
dropping packets at intermediate nodes. It has therefore 
attracted attention in the research for Transmission Control 
Protocol (TCP) of end-to-end congestion control. Random 
Early Detection (RED) [2] is the first well known AQM 
algorithm, which aims to drop packets with a certain 
probability a function of the average queue size. Furthermore, 
it is difficult to obtain adequate values of RED parameters to 
provide satisfactory performance in terms to provide of overall 
Quality of Service (QoS). Thus, feedback control principles 
appear to be an appropriate tool in the analysis and design of 
AQM strategies. Some controllers for AQM based on 
feedback  control theory have been developed, such as Integral 
(I) controller and PI controller in [3], Proportional-Derivative 
(PD) controller in [4], and PID controller in [5], [6]. The first-
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order controllers derived of phase-lead and phase –lags, have 
been used in the last decades. In fact, the problem of 
determining all stabilizing first-order controllers with 
analytical methods for delay free linear time-invariant systems 
has been recently solved in [7, 8, 9, 10]. Generally, dynamic 
performance of PI/PID and first-order controllers are unable to 
satisfy some performance specification of the transient 
performance (including small rise time, small settling time and 
small overshoot) and small steady state error simultaneously 
in some situation.  For resolved this problem an algorithm of 
improving the performance, based on Particle Swarm 
Optimization (PSO) is proposed, to determine  the optimal 
parameters of the first–order controller for TCP /AQM system. 
Indeed, the model of TCP/AQM is described by a second-
order system with time delay [11]. Nevertheless, several 
approaches have been proposed to determine the stabilizing 
region of controller parameters for TCP/AQM model without 
take into account the delay in the closed loop [12, 13, 14]. Our 
objective is to determining stabilizing optimal parameters of a 
first-order controller of the TCP/AQM model with time delay, 
using the PSO algorithm, for guarantee some performance for 
a high performance, this algorithm is named PSO/first-order 
controllers. This paper has been organized as follows: in 
section II, we introduce first the linear control system model. 
Next, we describe the AQM control law using a first-order 
controller with a mathematical formulation of its digital 
implementation. The stabilizing regions in the parameter space 
of a first-order controllers for TCP/AQM system with time 
delay are determined with the analytical method in section III. 
In section IV, the PSO method is proposed to obtain the 
optimal parameters of the controller. In section V, we will 
testify the validity of PSO/first-order controller, and the 
compare with PI controller through numerical simulations 
results both in Matlab and NS-2. Finally, the conclusion is 
drawn in section VI. 

II. MODEL TCP/AQM 
The dynamic model of TCP/AQM is developed in [15], 

using a fluid flow and stochastic differential equation analysis. 
In [3,11],  the model  is simplified and ignores  the   time out 
mechanism and slow start phase of TCP. This model is 
described by the following non-linear differential equations: 
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where ( )W t denotes the TCP window size (packet), ( )q t

denotes the queue length in the router (packet); ( ) ( )dW t
W t

dt
=�

and ( ) ( )dq t
q t

dt
=� ; ( )p t denotes the probability packet 

marking/dropping [ ]( )( ) 0,1p t ∈ ; ( )R t denotes the round-trip time
( )
( )

q t
TpC t

= + ; ( )C t denotes the link capacity (packet/s);
 T p

denotes the propagation delay (s) ; ( )N t denotes the load factor 
(number of TCP sessions). 

The first differential equation in (1) describes the TCP 
window control dynamic and the second equation models the 
bottleneck queue length. The queue length and window size 
are positive, bounded quantities, i.e., [ ]0,q q∈ , 0,W W⎡ ⎤∈⎣ ⎦  where q  

and W denote  buffer capacity and maximum window size, 
respectively. Also, the marketing probability p takes value 
only in [ ]0,1 .The dynamic model of TCP/AQM (1) is 
linearized in [3], [11], we illustrated the linear TCP/AQM 
dynamics in the linear TCP/AQM dynamics in a block 
diagram in Fig. 1. According to Fig. 1, the TCP/AQM model 
can be expressed by the transfer function ( )G s where 

        

    
( ) ( )( )G s G s G sTCP queue=
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(2) 

where ( )
TCP

G s  denotes the transfer function from loss 

probability pδ  to window size ,Wδ and ( )G squeue
relates Wδ to 

queue length qδ . The term 0sRe− is the Laplace transform of the 
time delay in the delayed loss probability 0( )p t Rδ −  notes the 
queue’s dynamic.  The network parameters { }, , 0N C R  are 
positive, and 00R >  is the time delay [11]. It is clear that the 
linearized TCP/AQM model is a second order plant with time 
delay.  

 
Fig. 1 Block diagram of the linerarizd TCPflow- control model 

 

III. AQM CONTROL SYSTEM DESIGN 
In this section, we present first the AQM control law using 

the first-order controller. Then we demonstrate the 
implemented digital of this controller.  

A. First-Order Controllers in AQM system 
In Fig. 2, we give a closed-loop feedback control system 

depiction of AQM, where ( )C s is the AQM controller, 
( ) ( )( )G s G s G sTCP queue=  is the plant dynamics, 0q is to the 

desired queue length around which the controller should 
stabilize q . 

 
Fig. 2   Block diagram of AQM control system. 

 
 Transfer function of first order controller for AQM is 

described as follows     
                                                                                       (3)         
           

B. Digital Implementation of the First-Order Controller 
The objective of an AQM controller is to mark packets with 

a probability p .The marking probability is calculated 
according to the first-order controller and it is a function of the 
difference between the instantaneous queue length and the 
desired queue length to which we want to regulate, where qδ
is given by 0q q qδ = −  and, we assume 0 0p =  , which makes  

p p∂ = . 
 The first order controller transfer function is in the form 

(1.1), we can write 
                                                                                       (4)    

                                                       
In order to evaluate the effectiveness and performance of 

the proposed first order controller by simulation, we use the 
NS- 2 Simulator which presents a discrete event simulator. In 
fact, the first order controller is not implemented in the core of 
Network Simulator, NS- 2 [16].  Hence, for the digital 
implementation of the first-order controller, we need to 
convert the transfer function (4) describe in the s–domain 
(Laplace Transform) into a z- transform and choose sampling 
frequency fs as 10-20 times the loop bandwidth. In our case, 

we choose 160f Hzs =  [3]-[11].  

The first-order controller transfer function is in the form (5), 
and in z-domain it becomes  

 

            

( ) ( )1 11 1

11

A z B z

z

p
q

α

αδ

− −− + −

−−
=

                             (5)      
where

 3A α= 2 1 3B α α α= −  and 1 .sTe αα −=  

−sR0
e

2
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2 2
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This transfer function (5) can be converted to the following 
difference equation for ,st kT=  where

 1 ,s sT f=  
 

 ( ) ( ) ( )( ) ( )( )1 2 1 1 *q s q s sp kT a kT b k T p k Tδ δ α= − − + −   (6)  

The digital implementations of a first-order controller tested 
in NS-2 can be described by the following pseudo code called 
at every sampling time. 

 

1

1 0 1 0( ) ( )o l d o l d

o l d

o l d
T

p a q q b q q p
p p
q q

e α

α

α −

= − − − +

=

=

=          (7)              
where 

1 2,a α= 1 3 2 1 3b αα α α α= + − , 1Te
α

α
−

=   

 
It is clear that the pseudo code (7) dependent of the first-

order controllers parameters ( ), ,1 2 3α α α . 

IV. STABILIZING FIRST-ORDER CONTROLLERS 
In this section, the aim is to determine the stabilizing 

regions of a first-order controller for TCP/AQM model with 
time delay via parametric methods. We consider the closed –
loop AQM system Fig. 2, ( )G s denotes the function transfer of 
the TCP/AQM plant and ( )C s denotes the transfer function of 
the first-order controller (3). 

 

                         
( ) ( )G(s) = G s G sTCP queue

    
                  ( )

0 ,
B -R s

= e
Q S                                     (8) 

where 
2

,
2
C

B
N

=
 

( ) 2 1
( )( )2 00

N
Q s s s

RR C
= + +

 
The network parameters { }, , 0N C R  are positive, and 0R  is 

the time delay.  The closed-loop AQM system is a second-
order system with time delay, whose characteristic equation  
is  

              ( ) ( )1 0C s G s+ =                                                    (9)       
which leads to the following characteristic quasi-polynomial.  

 
                                                                                     (10)   

Multiplying both sides of by 0R se yields 
 

     (11)   
                                                                                                                                                                
As 0R se does not have any finite zeros [17], the zeros of 
* ( )s� are identical to those of ( )s� . The characteristic quasi-

polynomial * ( )sΔ  of the closed-loop AQM system is stable if 
and only the zeros of ( )s� are in open left hand plane 
(LHP).Then, ( )s� is defined as Hurwitz or stable.  

A. Determining the Admissible Ranges of 1α  

The characteristic quasi-polynomial (11) dependents of 
three ( )1 2 3, ,α α α parameters, in fact to finding  the stabilizing  
regions of first-order controllers present difficulty to 
determine analytical , for these reason , our aims is to 
determine  the admissible ranges of the first parameters 

1α then 

to determine the remaining two parameters ( ),2 3α α . Therefore, 

for calculating the admissible values of 1α , the following 

Lemma 1 is given, which allow give a condition for the 
stability of ( )s� where ' ( )s�  denotes the derivative of ( )s� . 

 
Lemma 1. [18] Consider the quasi-polynomial  
                                                                                  
                                                                                          (12)         

 
such that ...1 2 rτ τ τ< < < , with main term 0 0rh ≠ and 01 rτ τ+ > .If

( )s� is stable then ' ( )s� is also a stable quasi-polynomial. 
 
Now, using Lemma 1, if ( )s� is stable then ( )s′� is also a 

stable quasi-polynomial, where 
 

 ( ) ( ) 0'
0

'
1 1 2( ) ( ) 1 ( ) ( ) R ss R s Q s s Q s e Bα α α⎡ ⎤

⎣ ⎦= + + + + +�
       (13) 

It is clear that (13) depends on two parameters ( ),1 2α α . 
 Repeating the same reasoning: if ( )s′� is stable, then   is 

also stable, ( )s′′�  given by 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) } 0

2
1 0 0 0

2
1 0 0

'' , ''( ) 2 2 ' 2

'' 2 '
R s

s sQ s R s Q s R s R Q s

Q s R Q s R Q s e

α

α

⎡ ⎤Δ = + + + +⎣ ⎦

⎡ ⎤+ + +⎣ ⎦

    (14)  

 Note that only one controller parameter 1α appears in the 

expression of ( )s′′� , moreover the term 0R se has no finite 

roots, so stability of '' ( )s�  is equivalent to stability in 

expression (13) without term 0R se .To sum up, using the 
condition of Lemma 1, we can get an admissible stabilizing 
range for the controller parameter 1α [19]. 

B. Stabilizing Regions in the Plane of ( ),2 3α α  

Once the admissible values of 1α is fixed within the range 

determined the above procedure, the set of the stabilizing 
regions in the plane of the parameters ( ),2 3α α is determined by 
using the D-decomposition method [20]. 
Evaluating the characteristic function at the imaginary axis is 
equivalent to replacing s by jω , 0ω ≥  in (11), which gives 

 
                                                                                     (15)   

 
                                                                
where ( )R ω and ( )I ω are the real and the imaginary part of ( )Q jω . 

* 0( ) ( ) ( ) ( )1 2 3
sRs s Q s B s eα α α

−
= + + +�

0( ) ( ) ( ) ( )1 2 3
R ss s Q s e B sα α α= + + +�

0 1

( ) l

n r
sn i

il
i l

s h s eτ−

= =

Δ = ∑ ∑

( )( ) ( )1 0 0

2 3

( ) ( ) ( ) cos( ) sin( )

( )

j j R jI R j R

B j

ω ω α ω ω ω ω

α ω α

⎡ ⎤= + + +⎣ ⎦
+ +

�
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Two cases can be investigated 
Case1. Fixing 0ω= , this leads to the following equations 

 

                   
( )3 1

1 0R
B

α α= −                            (16)   

Case2. For 0ω> , the following pair of ( ),2 3α α is be calculated for 

each fixed value of 1α  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 0 1 0

3 1 0 1 0

1 ( ) sin cos( )

1 ( ) cos sin( )

R I
I R R R

B

I R R R I R
B

ω ω
α ω α ω ω α ω

ω ω

α ω ω α ω ω ω ω α ω ω

⎧ ⎡ ⎤ ⎡ ⎤
= − − +⎪ ⎢ ⎥ ⎢ ⎥⎪ ⎣ ⎦ ⎣ ⎦⎨

⎪ ⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦⎪⎩  
(17) 

 
The stabilizing region determined by expression (16) and 

(17) guaranteed only that stability of the TCP/AQM model for 
closed loop, thus it is unable to satisfy some performance. In 
order to achieve good control performance of the TCP/AQM 
model, we will propose, in next section, a method Particle 
Swarm Optimization (PSO) to search efficiently the optimal 
parameters of the first -order controller.  

IV. OVERVIEW OF PARTICLE SWARM OPTIMIZATION 

A. Particle Swarm Optimization Algorithms 
PSO technique can generate a high-quality solution within 

shorter calculation time and stable convergence characteristic 
than other stochastic methods [21]-[22]-[23]. It guides 
searches using a population constructed by many particles 
rather than individuals. Generally, PSO is characterized as a 
simple concept, easy to implement, and computationally 
efficient. In the PSO algorithm, each particle, candidate 
solution to the optimization problem, is characterized by a 
random position and velocity. During flight, each particle 
updates its own velocity and position, by moving its trajectory 
towards its best solution (fitness) and by leaving a track of its 
coordinates in the problem space which are associated with the 
best solution that is achieved so far. This value is called pbest . 
Each particle also modifies its trajectory towards the best 
previous position attained by any member of its neighborhood 
[24]. Each particle also modifies its trajectory towards the best 
previous position attained by any member of its neighborhood, 
which represent another best value called gbest .  

The PSO concept consists of considering a population 
(swarms) of the pn particle moving randomly in the search 

space looking for the best solution. 
The modified velocity and position of each particle can be 

calculated using the current velocity and the distance from 

,i gpbest to 
ggbest as shown in the following formulas: 

2 2

( 1) ( ) ( ) ( )
1 1, , , , , ,

( 1) ( ) ( 1)
, , ,

. ( )( ) ( )( )t t t t

i d i d i d i g i d i d

t t t
i d i d i d

v v cr pbest x c r gbest x

x x v

ω+

+ +

= + − + −

= +

⎧⎪
⎨
⎪⎩   

(18)       

1, 2,...,d m=  ; 1,2,..., pi n=  

where pn  is the number of particles in a group; m is the 

number of members in a particles; t  is  the pointer of 
iterations (generations); ( )

,
t

i dv  is the velocity of particle i at 

iteration t such as min ( ) max
,
t

d i d dV v V≤ ≤ ; w is the inertia weight factor; 

,1 2c c  is the acceleration constant; 
1 2( ), ( )r r  is the random 

number between 0 and 1; ( )
,
t

i dx is the current position of particle i

at iteration t ; ipbest  is the best position discovered by the 
particle until the iteration t ; gbest  is the global best particle 

position of the entire population. Each particle ( 1, 2, ... )P i ni p= is 

characterized by the current position ( ),1 ,2 ,, ,...,i i i dix x x x= of Pi particle in 

the d-dimensional space; its velocity ( ), ,...,,1 ,2 ,v v v vi i i i d= ; the previous 

position pbest  of  the Pi particle is recorded and represented as

( ),1 ,2 ,, ,...,i i i i dpbest pbest pbest pbest= ; the index of best particle among all 

of the particles in the group is represented by the .dgbest To 
damp the velocity and to reduce uncontrollable oscillations of 
the particles, a method is incorporated into the system [25] 
limiting the velocity to a maximum value predetermined max .V  

This constraint is defined so that the particles do not move 
too quickly, for which regions searched be between the 
present position and the target position. In fact, if maxV is too 

high, particles might explore the good solutions, but if 
maxV is 

too small, particles may not explore sufficiently beyond local 

solutions. The 
maxV parameter thus improves the resolution of 

the search and arbitrarily limits the velocities of each particle
maxV . Much research which employed   PSO algorithm

maxV

was often set at 10–20% of the dynamic range of the variable 
on each dimension [24].The constant 1c and 2c  represents the 
weighting of the stochastic acceleration terms that pull each 
particle toward pbest and gbest positions. In some works, 
these parameters are determined from the following equation 

 

                         0 41 2c c≤ + ≤                                         (19) 
   

In our case, we adopt 1 2 2c c= =  which verify equation (19) 
[26]. The inertia weight factor w  is used to defined the 
exploration capacity of each particle, hence to improve the 
convergence of the PSO algorithm, in general, w  is according 
to the following equation  

 

                     max min

max

w w
w iter

iter

−
= ×

                               (20) 
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where maxiter is the maximum number of iterations 
(generations), and iter  is the current number of iterations.  

A. Implementation of PSO/first-order controller 
In this part, we used the new performance criterion in the 

time domain [24] include the overshoot
pM , rise time rt , 

settling time st  and steady state error 
ssE  for determining the 

optimal parameters of the first-order controllers for TCP/AQM 
network systems. The first-order controller using the PSO 
algorithm is developed to improve a good step response that 
will result in performance criteria minimization in the time 
domain. Therefore, a new performance criterion ( )W α is 
defined as [24]. 

 

     ( ) ( ) ( ) ( )1 . .p ss s rW e M E e t tβ βα − −= − + + −                  (21) 
   

where ( )2 3,α α α= are three parameters of the first-order 
controller to compose an individual and β is weighting factor. 
For used the PSO method, we adopt the term “individual” to 
replace the “particle” and the “population” to replace the 
“group” in this paper. The members ( )2 3,α α α= are assigned as 
real values. If there are individuals in a population, then the 
dimension of a population is 3n× . The performance criterion

( )W α can satisfy the designer requirements using β . In fact, if
0.7β> , the overshoot and steady states error are reduced, but if 
0.7β< , the rise time and settling time are reduced [24]. In 

general, the β  is defined in the range [ ]0.8,1.5 [25]. For our 

case of design, due to trials, β is set to 1.5 to optimum the step 
response of TCP/AQM network systems. Now, we define the 
reciprocal of performance criterion ( )W α  by the fitness 
function f , as being the evaluation value of each individual in 
population. It implies the smaller ( )W α  the value of individual

( )2 3,α α α= , the higher its evaluation value 

( ) ( )
1f

W
α

α
=

                                  (22) 

 
In many works, the Routh–Hurwitz criterion was employed 

to test the closed-loop system stability to limit the evaluation 
value of each individual of the population within a reasonable 
range [24]. If the individual satisfies the Routh–Hurwitz 
stability test applied to the characteristic equation of the 
system, then it is a feasible individual and the value of is 
small. In the opposite case, the value of the individual is 
penalized with a very large positive constant.  In our case it is 
not necessary to test the stability because the stabilizing 
regions of parameters ( ), ,1 2 3α α α  are determined in the previous 
section [26].

 The proposed PSO method each particle contains two 
members ( ),2 3α α . It means that the search space has two 

dimension and particles must ‘fly’ in a two. Our objective here 
is to minimize the performance criteria such as the overshoot, 
rise time, settling, and steady- state error. We calculate the 
step response of the system and out of which we calculate the 
performance criteria. The iterations are run till the 
performance criteria minimize.  

The flowchart of the PSO is shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
 
 
 
 
 
 
              
 
 
 
              No 
 
 
 
                                                             
                         Yes 

      
 
 
                                    
Fig. 3 The flowchart of the PSO/first-order controller for TCP/AQM 

system 
 
 
 
 

Stop  

START

Generate initial populations

Calculate parameters ( ), ,1 2 3α α α of

first-order controller and pM , rt , st ,
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Calculate the fitness function

Calculate the pbest
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and gbest of population
 
and affect the 
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Update the velocity of each individual
α  
     

( 1) max
, ,t

j d dv V+ > ⇒ ( 1) max
,
t

j d dv V+ =  
( 1) min
, ,t

j d dv V+ <  ⇒ ( 1) min
,
t

j d dv V+ =  

Update the position of each 
individual α  

( 1) ( ) ( 1)
, , ,
t t t

i d i d i dvα α+ += + min ( 1) max
,
t

d i d dα α α+≤ ≤  

Maximum 
iteration number 
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V. SIMULATIONS AND DISCUSSIONS 
This section validates the effectiveness and performance by 

simulation, of a first-order controller using PSO algorithm, 
named PSO/first -order controller  

A. Simulation in Matlab 
In the first simulation, we will conduct simulation by 

Matlab. Thus, we consider determining the stabilizing regions 
in the parameter space of a first order controller applied to the 
system given in equation (6).  

According to the network parameters 60,N = 3750packets/sC=

and 0.2 50R s= , it follows from (23) that 

 

       

117187.5 0.246( )
( 0.512 )( 0.4)

sP s e
s s

−=
+ +

                           (23)  

                           
The admissible range of 1α is ( )1 -2,α +∞ , obtained by applying 

the procedure given in section 3, Then fixing 2 51 eα = −  the 

interval, the stabilizing region in the plane of the remaining of 
the two parameters ( ),2 3α α derived from equations (16) and 
(17) is determined. The stabilizing regions in the plane

 in Fig. 4. 
 

 
Fig. 4 Stabilizing regions in the plane ( ),2 3α α  

 
Fig. 5 represents the step response of the closed loop system 

with { }4( , , ) 2 5,1 4, 01 2 3 .6e e eα α α −= − − , we found the following 
performance

 ( ) ( ){ }64,897%, 0, 0.3914 , 9.1328M E t s t sp ss r s= = = =  
 

 
Fig. 5 Step response of the TCP/AQM closed-loop system 

 
Now, we applied PSO/ first-order controller, presented in 

section 4.  
According to the trials, the following PSO parameters are 

used to verify the performance of the PSO/first-order 
controller parameters. We fix 2 51 eα = − and we search the two 

optimal parameter ( ),2 3α α   
- The lower and upper bounds of the two controller 

parameters are chosen of the stabilizing regions in Fig.4. 
min max
2 20.17 4, 1.8 4 ,e eα α⎡ ⎤= − − = −⎣ ⎦

 min max
3 30, 1.2 4eα α⎡ ⎤= = −⎣ ⎦

, 

-  Population size=30;  
- Iteration=30; 
- Acceleration constant 21 2c c= = ;  

- Inertia weight factor w  is set by (20), where min = 0.4w  ,

max 0.9=w  
- The limit of change in velocity [24] 

1

1

max
max

2
Vα

α
= , 2

2

max
max

2
Vα

α
= et 3

3

max
max

2
Vα

α
=  

Using the procedure presented in the flowchart, we obtain two 
optimal parameters of the first-order controller 

{ }2 3( , )  2.2812e-5,1.8107e-5α α =  

 
Fig. 6 Step response of the TCP/AQM closed-loop system 
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Fig. 6 represents the step response of the closed loop system 
with { }1 2 3( , , ) 2e-5,  2.2812e-5,1.8107e-5α α α =  

The performance of the PSO/first–order controller is 
( ) ( ){ }12.320%, 0, 1.14 , 6.1691p ss r sM E t ts s= = = = , we note that 

the PSO method  allows to obtain  good evaluation value, thus, 
achieve better performance criterion  (no overshoot, minimal 
rise time, Steady state error = 0). 

A. Simulation in NS 
 In order to verify the effectiveness and performance of the 

proposed PSO first order controller by simulation we used the 
NS-2 simulator .The network topology is shown in Fig. 8.  

 

 
Fig. 7 Simulation of network topology 

 
We introduced 60 TCP flows and the simulation time is 80 

s. ( )1,...,S i ni = are TCP senders with average packet size 500 
Bytes. Sd is a FTP sender which has 10 Mbps capacity and 20 
ms propagation delay, the traffic scenario. The only bottleneck 

Link lies between Router 1R and 2R , which has 15Mbps 

capacity and 5ms propagation delay. Router 1R uses the PSO 
First-order controller (or PI controller), others use the Drop 
Tail. The sampling is160Hz . The buffer has a maximum 
capacity of 800 packets and the desired queue length is 200 
packets. The parameters of the PI controller defined in [3] are 

1.822 5a e= − and 1.816 5b e= − , the parameters of the first-order 
controller are chosen to the stabilizing region in Fig.5:

{ }4( , , ) 2 5,1 4, 01 2 3 .6e e eα α α −= − − and the parameters optimal of the 
PSO/first-order controller determined in the section IV are 

{ }1 2 3( , , ) 2e-5, 2.2812e-5,1.8107e-5α α α =  

We will use the network configuration presented in Fig. 7, 
we make a comparison between PSO/ first-order controller 
with first order controller and PI controller.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 8  Instantaneous queue size, PSO/first-order controller,  
(a) PSO/first-order controllers (b) First-order controllers (c) PI 

controllers 
 

The desired queue is fixed at 200 packets in both 
controllers, the instantaneous queue length of PSO/first-order 
controller, first-order controller and PI controller respectively, 
is plotted in Fig. 8. We noticed that the PI controller and first -
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order controller have taken a long time to regulates the queue 
to reference value compared the PSO/ first-order controller 
which quickly keeps the queue length. 
 

VI. CONCLUSIONS 
In this work, first, we determine the set of stabilizing values 

of first-order controllers for TCP/AQM system with time 
delay. After, we propose a Particle Swarm Optimization 
(PSO) method for determining the optimal parameters of a 
first-order controller. The results show that the proposed 
controller can perform an efficient search for the optimal 
parameters. The simulation with NS-2 simulator shows that 
the proposed PSO/first-order controller has better performance 
than Hollot’s PI control scheme.  
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