**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30685

##### Numerical Simulations of Shear Driven Square and Triangular Cavity by Using Lattice Boltzmann Scheme

**Authors:**
A. M. Fudhail,
N. A. C. Sidik,
M. Z. M. Rody,
H. M. Zahir,
M.T. Musthafah

**Abstract:**

In this paper, fluid flow patterns of steady incompressible flow inside shear driven cavity are studied. The numerical simulations are conducted by using lattice Boltzmann method (LBM) for different Reynolds numbers. In order to simulate the flow, derivation of macroscopic hydrodynamics equations from the continuous Boltzmann equation need to be performed. Then, the numerical results of shear-driven flow inside square and triangular cavity are compared with results found in literature review. Present study found that flow patterns are affected by the geometry of the cavity and the Reynolds numbers used.

**Keywords:**
lattice Boltzmann method,
square cavity,
shear driven cavity,
triangular cavity

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1328818

**References:**

[1] C. S. N. Azwadi and A. M. Fudhail, "Mesoscale Numerical Prediction of Fluid Flow in a Shear Driven Cavity", unpublished.

[2] M A. R. Sharif, "Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom", Applied Thermal Engineering., vol. 27, 2006, pp. 1036-1042.

[3] U. Ghia., K. N. Ghia and C. Y. Shin, "High Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method", Journal of Computational Physics., vol. 48, 1982, pp. 187-411.

[4] E. Erturk., T. C. Corke and O. Gokcol, "Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers", International Journal for Numerical Methods in Fluids., vol. 48, 2005, pp. 747-774.

[5] S. Albensoeder and H. C. Kuhlmann, "Accurate three dimensional lid-driven cavity flow", Journal of Computational Physics.," vol. 206, 2005, pp. 536-558.

[6] E. Erturk and O. Gokcol, "Fine grid numerical solutions of triangular cavity flow", The European Physical Journal Applied Physics, vol. 38, 2007 pp. 97-105.

[7] M. Li and T. Tang, "Steady Viscous Flow in a Triangular Cavity by Efficient Numerical Techniques", Computers Mathematics Application, vol. 31, no. 10, 1996, pp. 55-65.

[8] C. J. Ribbens, L. T. Watson, and C. Y. Wang, "Steady Viscous Flow in a Triangular Cavity", Journal of Computational Physics, vol. 112, 1992.

[9] G. Poutrelli, S. Ubertin and S. Succi, "The unstructured lattice Boltzmann Method for Non-Newtonian Fluid", vol. 06, 2009.

[10] O. Filippova and D. Hanel, "Grid Refinement for Lattice-BGK Models", Journal of Computational Physics, vol. 147, 1998, pp. 219-228.

[11] Sukop, M. C. and Thorne, D. T., Lattice Boltzmann Modeling: An introduction for geoscientists and engineers, Springer, New York, 2006.

[12] C. S. N. Azwadi, "The Development of New Thermal Lattice Boltzmann Models for the Simulation of Thermal Fluid Flow Problems. Doctor of Philosophy, Keio University, Japan. 2007.

[13] C. S. N. Azwadi and T. Tanahashi, "Simplified Thermal Lattice Boltzmann in Incompressible Limit", International C. S. N. Azwadi of Modern Physics, B 20, 2006, pp. 2437-2449.

[14] C. H. Bruneau, and M. Saad, "The 2D Lid Driven Cavity Problem Revisited", Computers and Fluids., vol. 35, 2006, pp. 326-248.