

Abstract—Web usage mining is an interesting application of data 

mining which provides insight into customer behaviour on the 
Internet. An important technique to discover user access and 
navigation trails is based on sequential patterns mining. One of the 
key challenges for web access patterns mining is tackling the problem 
of mining richly structured patterns. This paper proposes a novel 
model called Web Access Patterns Graph (WAP-Graph) to represent 
all of the access patterns from web mining graphically. WAP-Graph 
also motivates the search for new structural relation patterns, i.e. 
Concurrent Access Patterns (CAP), to identify and predict more 
complex web page requests. Corresponding CAP mining and 
modelling methods are proposed and shown to be effective in the 
search for and representation of concurrency between access patterns 
on the web. From experiments conducted on large-scale synthetic 
sequence data as well as real web access data, it is demonstrated that 
CAP mining provides a powerful method for structural knowledge 
discovery, which can be visualised through the CAP-Graph model.

Keywords—concurrent access patterns (CAP), CAP mining and 
modelling, CAP-Graph, web access patterns (WAP), WAP-Graph, 
Web usage mining.

I. INTRODUCTION

EB data mining is the discovery of patterns from the 
web when viewed from its various perspectives [1]. It is 

natural to consider the application of general data mining 
techniques in the context of the web, while recognising that 
web-based data will sometimes require pre-processing to a 
suitable format. According to analysis targets, web mining can 
be divided into three different types, namely web content 
mining, web structure mining and web usage mining [2,3]. 
Web content mining pursues the search for useful information 
from the web contents, its data and documents; web structure 
mining is used to identify the relationship between web pages 
associated by information or direct link connection; web usage 
mining focuses on techniques that could predict customer 
behaviour while the user interacts with the web.

Web access patterns mining is a type of usage mining that 
looks at web page visit history. The frequent web access 
patterns mined from web log files are essential for web masters 
and developers to improve the design of their web sites further 
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[4]. Mining frequent web access patterns from very large 
databases (e.g. using click-stream analysis) has been studied 
intensively and there are a variety of approaches. Most of the 
previous studies have adopted a sequential patterns mining
technique – which aims to find sub-sequences that appear 
frequently in a sequence database – on a web log access 
sequence. In web server logs, a visit by a client is recorded 
over a period of time and the discovery of sequential patterns 
allows web-based organisations to predict user visit patterns, 
which helps in targeting advertising aimed at groups of users 
based on these patterns.

Traditional sequential patterns mining approaches such as 
Apriori-based algorithms [5,6] encounter the problem that 
multiple scans of the database are required in order to 
determine which candidates are actually frequent. Pei et al. 
introduced a compressed data structure called Web Access 
Pattern tree (or WAP-tree), which facilitates the development 
of algorithms for mining access patterns from pieces of web 
logs [7]. Since then, many modifications were proposed in 
order to further improve efficiency, by eliminating the need to 
perform any re-construction of intermediate WAP-trees during 
mining; for example the Position Coded Pre-order Linked Web 
Access Pattern mining algorithm [8,9], Conditional Sequence 
mining algorithm [10] and the modified Web Access Pattern 
(mWAP) algorithm [11].

Typically the methods described above mine the complete 
set of web access patterns and, in many cases, a large set of 
access patterns is not intuitive and not necessarily very easy to 
understand or use. Also, questions that can be asked about web 
access patterns mining are: What is the inherent relation 
among web access patterns? Is there a general representation 
of the access patterns? And are there any other novel patterns 
that can be discovered based on these access patterns? These 
questions point out some challenges for web access patterns 
mining methods and indicate further research directions in web 
data modelling.

Sequential Patterns Graph (SPG) has been proposed as the 
minimal representation of a collection of sequential patterns as 
well as describing the inherent relationship among sequences 
[12]. The SPG approach is extended in this work to model all 
access patterns and called Web Access Patterns Graph (WAP-
Graph). The primary focus of this paper is on the search for 
concurrency in web access patterns through Concurrent Access 
Patterns (CAP) mining. The WAP-Graph approach itself is 
then extended to model all concurrent access patterns and 
called CAP-Graph.

Related work is highlighted in the next section to provide 
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relevant background on sequential patterns post-processing
and web access patterns mining. The modelling of access 
patterns is presented in section III through WAP-Graph and its
construction algorithm. The idea of concurrency is introduced
to the web access context in section IV, and both the mining 
and modelling methods are proposed for concurrent access 
patterns, culminating in the novel CAP-Graph representation. 
An experimental evaluation using synthetic and real datasets is 
given in section V which showcases the results of CAP mining 
and modelling. The paper draws to a close by suggesting a 
framework for web access patterns post-processing while 
making brief conclusions.

II. RELATED WORK

This section will describe two types of related work to 
provide background and further motivation – one of them is 
from the authors’ previous research on sequential patterns 
post-processing.

A. Sequential Patterns Post-Processing

Frequent patterns mining is one of the most important 
knowledge discovery techniques, searching for sub-structures 
that appear frequently (i.e. more than a given support 
threshold). For example, frequent itemset mining [13] aims to 
find frequent itemsets in a transaction database and sequential 
patterns mining [5,6,14] aims to find sub-sequences that 
appear frequently in a sequence database.

With the successful implementation of efficient and scalable 
algorithms for mining frequent itemsets and sequential 
patterns, it was natural to consider extending the scope of 
previous study to more structured data mining, for example 
through post-processing. There are two aspects to such 
sequential patterns post-processing here: the modelling of 
sequential patterns in a graphical way [12] and discovering 
new structured patterns beyond these sequences [15].

In sequential patterns mining, given a customer sequence 
database and user-specified minimum support (minsup), a set 
of sequential patterns (i.e. frequently occurring sub-sequences 
within the database) can be discovered. All sequential patterns 
under the specified minsup can be generated from the maximal 
sequence set – sequential patterns which are not contained in 
any other sequential patterns. Thus, a directed acyclic graph 
called Sequential Patterns Graph (SPG) was defined to 
represent the maximal sequence set [12].

SPG can be viewed as the graphical representation of the 
relationship among sequential patterns. Nodes (i.e. items or 
itemsets) of SPG correspond to elements in a sequential 
pattern and directed edges were used to denote the sequence 
relation between two elements. Two special types of nodes 
called a start node (represented by double circles) and a final 
node (represented by a bold circle) were defined to indicate 
the beginning and end of maximal sequences. Any path from a 
start node to a final node corresponds to one maximal 
sequence. Fig. 1 gives an example of a SPG which shows the 
graphical components used.

Fig. 1 A sequential patterns graph

The segment circled by a dotted line in Fig. 1 represents 
maximal sequences eacb and efcb in particular, while also 
including all of the other sequential patterns e, a, c, f, b, ea, ef, 
ec, eb, ac, fc, ab, fb, cb, eac, efc, eab, efb and ecb.

The significance of SPG is not limited to the minimal 
representation of a collection of sequential patterns. It also 
motivates the discovery of further relationships among 
sequential patterns and this led to the novel approach to 
sequential patterns post-processing called Post Sequential 
Patterns Mining or PSPM [15]. Some sequential patterns may 
be supported by the same data sequence, and these have been
called concurrent patterns; while some others may not possibly 
occur in the same data sequence, and these have been called 
exclusive patterns. Furthermore, some sequential patterns may 
occur more than once in a data sequence, such that an iterative 
relationship can be expressed, and this was called an iterative 
pattern. Structural Relation Patterns is the general designation 
of patterns [16] that consists of sequential patterns, concurrent 
patterns, exclusive patterns, iterative patterns and their 
composition.

PSPM does not mine structural relation patterns directly 
from the data, as it first takes advantage of existing sequential 
patterns mining methods. Further analysis of the inherent 
relationships behind these sequential patterns resulted in the 
identification of new structures, such as concurrent patterns, 
and a corresponding data mining method was proposed in [16].

B. Web Access Patterns Mining

Web access patterns have been defined by Pei et al. based 
on the problem statement of sequential patterns mining [7]. In 
general, a web log can be regarded as a sequence of user 
identifier and event pairs. Each piece of web log is a sequence 
of events from one user or session in timestamp ascending 
order. Pei et al. modelled pieces of web logs as sequences of 
events and mined the sequential patterns beyond a certain 
support threshold. For convenience, we first introduce some 
definitions and notation for representing the user’s action when 
visiting a web site [7].

Let P={p1,…, pq} be a set of q items (e.g. web pages). An 
Access Sequence S=<as1,…, asl> is an ordered list of items 
(web pages), where asiP, i{1,…, l} and l is called the 
length of the access sequence. An access sequence of length l
is also called an l-sequence.
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An access sequence S1=<X1, X2,…, Xm> is contained in 
another sequence S2=<Y1, Y2,…, Yn> if mn and there exist 
integers 1≤i1<i2<…<im≤n such that Xj=

jiY (1≤j≤m), and it is 

denoted by S1S2. If sequence S1 is contained in sequence S2, 
then S1 is called a sub-sequence of S2 and S2 a super-sequence 
of S1.

A Web Access Sequence Database (WASD) is a set {S1, S2, 
…, Su}, where each Si (1≤i≤u) is an access sequence. The 
support in WASD of any given access sequence S is defined as 
SupWASD(S)=|{Si:SSi}|/u, where |…| denotes the number of 
access sequences. Given a fraction minsup (0minsup1) as 
the minimum support threshold, S is called an Access Pattern
in WASD if SupWASD(S)≥minsup. An access pattern is called a
maximal access pattern if it is not contained in any other 
access patterns.

Problem Statement. The problem of web access patterns 
mining is: given a web access sequence database WASD and a
minimum support threshold, minsup, mine the complete set of 
access patterns in WASD.

Due to the importance of its application, web access 
patterns mining has been extensively studied in the literature 
and there exists a diversity of algorithms. Most of them are 
either Apriori-based algorithms or WAP-tree algorithms. 
Without referring to any specific algorithms, Example 1 
illustrates the nature of web access patterns mining using the 
notation and definitions above.

Example 1. Given a small web log that recorded user access 
to seven web pages labelled as {a, b, c, d, e, f, g} respectively. 
Let WASD={<abdac>, <eaebcac>, <babfaec>, <afbacfc>} 
with a minsup of 50%. Fig. 2 shows the set of all access 
patterns in this case, presented at levels of the same length of 
sequences.

4-sequence

3-sequence

2-sequence

1-sequencea b c e f

…...…...
abcc afacabfcabac bafc

ab aeac baaf bc bf ecccaa fa fc

abc abf afaaec bafafc bfc facaac aba acc bac bcc

Fig. 2 Web access patterns with 50% minsup

The lines in the figure represent the containing relationships 
between access patterns; for example, abcabfc, afcabfc and 
ababf etc. The access patterns within the shadow boxes are 
maximal access patterns, i.e. abac, abcc, abfc, afac, bafc and 
aec. This means that at least 50% of users visited web pages in 
the above sequences.

III. WEB ACCESS PATTERNS MODELLING

Almost all of the studies related to web access patterns 
mining focus on improving the efficiency of mining methods 
and there is little work on post-processing web access patterns;
for example on how to visualise these access patterns or how 
to discover structural knowledge based on these access 

patterns. Therefore, a novel model called Web Access Patterns 
Graph (WAP-Graph) is proposed as a graphical representation 
of web access patterns as well as providing the means to 
represent the inherent relations among the access patterns.

A. Web Access Patterns Graph

The web can be modelled naturally as a directed graph, 
consisting of a set of abstract nodes (web pages) joined by 
directional edges (hyperlinks). The idea of sequential patterns 
graph can also be used for the modelling of web access 
patterns and we introduce the following definition.

Definition 1. Given a Maximal Access Patterns Set (MAPS) 
– a collection of access patterns that is not contained by other 
access patterns – Web Access Patterns Graph (WAP-Graph) is 
defined as the graphical representation of the MAPS. It is a 5-
tuple expressed as WAP-Graph=(V, E, S, F, δ), where   
1) V is a nonempty set of nodes (web pages). Each element of 

an access pattern in MAPS corresponds to one node in V 
and each node in WAP-Graph corresponds at least to one 
element of an access pattern in MAPS. 

2) E is a set of directed edges (hyperlinks). The relation of 
any two adjacent elements in an access pattern of MAPS 
corresponds to the directed edge of two nodes in WAP-
Graph. Any one directed edge corresponds to the 
sequential relation of at least one pair of adjacent elements 
in an access pattern of MAPS. 

3) S is a set of start nodes, SV, and S≠. There are no start 
nodes that have the same label in WAP-Graph (if there are, 
they should be considered as the same node).

4) F is a set of final nodes, FV, and F≠. There are no final 
nodes that have the same label in WAP-Graph (if there are, 
they should be considered as the same node).

5) δ is a function from a set of directed edges to a set of pairs 
of nodes. δ can also be defined as a map function of VV, 
which indicates the relations between any two nodes.

For any node in WAP-Graph, the subsequent paths of it 
cannot be the same, and the ancestor paths of it cannot be the 
same either. For each pair of different nodes in WAP-Graph, if 
they have same label, there must be different ancestor paths or 
subsequent paths of them.

Example 2. The maximal access patterns from Example 1 
are aec, abac, abcc, abfc, afac and bafc. Fig. 3 shows a WAP-
Graph that corresponds to the MAPS and, therefore, the 
complete set of access patterns in Fig. 2.

Fig. 3 WAP-Graph for access patterns in Fig. 2
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With reference to Fig. 3, it is seen that nodes of WAP-
Graph correspond to elements in an access pattern and directed 
edges are used to denote the access relation between two web 
pages. As with SPG, a start node (represented by double 
circles) and a final node (represented by a bold circle) are 
defined to indicate the beginning and end of maximal access 
sequences. Any path from a start node to a final node 
corresponds to one maximal access pattern.

B. WAP-Graph Construction

The approach to construction of a WAP-Graph is described 
below. 
1) Initialisation. Determine the longest length l of access 

patterns in MAPS – represent one of the longest access 
patterns by a directed graph G – sort the remaining patterns 
in order of length.

2) Construction. For the next available access pattern ap in 
MAPS, find any common prefix and/or postfix with G – if 
they share a common prefix/postfix, then use the Algorithm 
below to construct the next transitional graph model G –
otherwise represent ap by a separate graph G' and set 
G=GG'.

3) Iteration. For the remaining access patterns in MAPS, 
which have the same or shorter length – i.e. l, l-1, l-2, etc. –
repeat Step 2 incrementally until there are no access 
patterns left in MAPS. The final result G is the Web 
Access Patterns Graph, WAP-Graph.

Algorithm 1 WAP-Graph Construction Algorithm

Input: An access pattern ap from a maximal access patterns
set MAPS and a transitional graph model G
Output: New directed graph G after incremental construction
Procedure:

preS=common prefix of ap and G
postS=common postfix of ap and G
elemS=ap-preS-postS
Represent elemS by the directed graph G'
If preS is not empty

Add a directed edge from the last node of preS in G 
to the first node of G'

If postS is not empty
Add a directed edge from the last node of G' to the 
first node of postS in G

This new directed graph includes a new pattern ap and is 
called G.

Using the modelling method and construction algorithm 
above, the WAP-Graph for MAPS={aec, abac, abcc, abfc,
afac, bafc} can be constructed step-by-step. Fig. 4 is a 
graphical illustration of this procedure and highlights the 
above approach, where the dotted lines represent the new 
edges in the transitional model.

Fig. 4 WAP-Graph construction for MAPS={aec, abac, abcc, abfc,
afac, bafc}

It is worth noting that the initialisation and construction 
phases select the first/next available access pattern, where 
there is not always a unique choice. For this reason, the result 
of access patterns modelling can yield different but equivalent 
graphical representations.

WAP-Graph can be viewed as the visual embodiment of the 
relationship among access patterns on the web. It is the 
minimal representation of a collection of access patterns. The 
significance of WAP-Graph is not limited to graphical 
representation of web access patterns mining results, as the 
inherent relationships among access patterns can also be 
represented. 

As a further example, it can be seen from Fig. 2 that some 
access patterns share the same prefix, e.g. ab, ae and af share 
the same prefix a, which means at least 50% of users visited 
web pages in the sequence ab, ae or af. Here web pages b, e, 
and f may not have linkage directly, but they were all accessed 
through a. Is there any relationship among access patterns 
which share the same prefix/postfix? Are users who visited 
web page a likely to visit all of the web pages b, e, and f
subsequently? If so, then b, e and f are potentially in a 
concurrent relationship.

IV. CONCURRENT ACCESS PATTERNS MINING AND
MODELLING

Concurrency is an important aspect of some system 
behaviour. For example, discovering patterns of concurrent 
behaviour from traces of system events is useful in a wide 
variety of software engineering tasks, including user 
interaction modelling and software process improvement, and 
this can be extended to user interaction on the web. This 
section will propose a corresponding concurrent access 
patterns mining method with associated modelling.

A. Concurrent Access Patterns

The notion of concurrence will be developed first in this 
sub-section, which leads to concurrent access patterns and the 
related theorem. For the following definitions, the set of access 
sequences {Si} (1≤i≤u) in the web access sequence database 
WASD is used and it is assumed that {ap1, ap2,…, apk} is a set 
of access patterns AP which are not contained in each other.

Definition 2. The concurrence of access patterns ap1, 
ap2,…, apk is defined as the fraction of access sequences {Si} 
that contain all of the access patterns. This is denoted by
concurrence(ap1, ap2,…, apk)=|{Si: apjSi,j (j=1,2,…,k)}|/u
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where apjSi represents access pattern api contained in access 
sequence Si.

The user-specified minimum support threshold (i.e. minsup)
has been used as the frequency measurement for mining 
frequent itemsets, sequential patterns and web access patterns. 
Another percentage value, minimum concurrence threshold 
(0mincon1), is introduced below to check the concurrency 
of access patterns within the whole web access sequence 
database.

Definition 3. Let mincon be the user-specified minimum 
concurrence. If 

concurrence(ap1, ap2,…, apk)mincon
is satisfied, then ap1, ap2,…, apk are called Concurrent Access 
Patterns. This is represented by CAPk=[ap1+ap2+…+apk],
where k is the number of access patterns which occur together
and the notation ‘+’ represents the concurrent relationship
between them.

Definition4. A concurrent access pattern 
CAPk=[a1+a2+…+ak] is contained in concurrent access pattern 
CAP(k+m)=[b1+b2+…+bk+m] if aibj, for 1≤i≤k and 1≤j≤(k+m). 
This is denoted by CAPkCAP(k+m). Concurrent access patterns 
are called maximal if they are not contained in any other 
concurrent access patterns.

Example 3. Consider WASD={<abdac>, <eaebcac>, 
<babfaec>, <afbacfc>} from Example 1 and assume a mincon
of 50%. Since both access sequences <babfaec> and 
<afbacfc> support access patterns abac and abfc, then: 
concurrence(abac, abfc)=2/4=50%. Therefore, they constitute 
a concurrent access pattern given by CAP2=[abac+abfc], 
where abac and abfc share the same prefix a and postfix c
within CAP2.

The following theorem, derived from Lu et al. [17], gives a
more concise CAP representation.

Theorem 1. If k access patterns from a set AP make up a 
concurrent access pattern CAPk=[xα1y+xα2y+…+xαky], where 
(xαiyAP, 1ik; αiAP; x,yAP or x,y=), then it can be 
further represented as x[α1+α2+…+αk]y and α1,α2,…, αk called
the k branches of CAPk.

For example, by having another look at CAP2=[abac+abfc] 
in Example 3, one can take out the common prefix ab and 
postfix c to yield the modified representation ab[a+f]c.

Note that in a concurrent access pattern such as ab[a+f]c, 
the order of branches a and f is indefinite. Therefore ab[a+f]c 
can appear in a web access sequence database in the form of 
abafc or abfac. Also note that, while abafc or abfac cannot be 
discovered from traditional web access patterns mining with a 
minsup of 50%, they make up the new pattern ab[a+f]c under a 
mincon of 50%.

B. CAP Mining

Using the above definitions, the problem of concurrent 
access patterns mining can be stated as follows: given a web 
access sequence database WASD and web access patterns 
mining results (i.e. web access patterns which satisfy a 
minimum support threshold), concurrent access patterns 
mining aims to discover the set of all concurrent access 

patterns beyond a given user-specified minimum concurrence,
mincon.

The three main steps for mining concurrent access patterns 
are described below.
1) Calculation of Access Patterns Supported by Access

Sequences (SuppAP). Access patterns which are supported 
by a given access sequence S (SWASD) under minsup are 
computed and denoted by: 

SuppAP(S)={ap: apAPapS}.
The union of SuppAP(S1), SuppAP(S2),…, SuppAP(Sn), 
where SiWASD (1in, n is the number of access 
sequences), is the set of access patterns supported by 
WASD.

2) Determination of Concurrent Access Patterns (CAP). Each 
SuppAP(Si) can be viewed as a transaction, i.e. the 
unordered set of access patterns supported by access 
sequence Si. Thus, the problem of finding the concurrent 
access patterns (under user-specified mincon) from WASD 
becomes one of mining frequent itemsets from a
transaction database under mincon=minsup. Therefore, the 
traditional frequent itemset mining approach can be 
adapted for this step.

3) Finding Maximal Concurrent Access Patterns (MaxCAP). 
According to the containing relationship among sequences, 
the CAPs need to be simplified in order to obtain the 
maximal concurrent access patterns. This can be achieved 
using Definition 4 by:

i) Deleting the concurrent access patterns CAPk which 
are contained by other concurrent access patterns 
CAP(k+m).
ii) Deleting the access patterns in CAPi contained by 
other access patterns within the same CAPi.

Example 4. An example is given to explain how to mine 
concurrent access patterns based on traditional web access 
patterns mining. In order to do this, the web access sequence 
database WASD in Example 1 and access patterns in Fig. 2 are 
considered again for illustration, with a mincon of 50%. The 
following steps correspond to the three described above.

Step 1. Using the results from Fig. 2, SuppAP are calculated
for every access sequence in order. These access patterns are 
shown in Table I.

Step 2. Access patterns sets which are supported by at least 
two web access sequences in WASD is the requirement for 
concurrency here, given the mincon of 50%. The second and 
third access sequences support access patterns a, b, c, e, aa, 
ab, ac, ae, ba, bc, ec, aac, aba, abc, aec, bac and abac, which
therefore constitute concurrent access patterns. 

Step 3. Containing relationships exist among the above 
concurrent access patterns however, e.g. aaaaacabac; 
bbabacabac; eecaec; cbcabc … (as indicated by 
the lines in Fig. 2). Therefore the sub-sequences a, aa, aac, b, 
ba, bac, e, ec, c, bc, abc, aba can be deleted, which results in 
the maximal concurrent access pattern CAP2=[aec+abac].
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TABLE I
WEB ACCESS PATTERNS SUPPORTED BY EACH SEQUENCE

Web Access Sequence SuppAP

<abdac>
a, b, c, aa, ab, ac, ba, bc, aac,
aba, abc, bac, abac

<eaebcac>
a, b, c, e, aa, ab, ac, ae, ba, bc,
cc, ec, aac, aba, abc, acc, aec, 
bac, bcc, abac, abcc

<babfaec>

a, b, c, e, f, aa, ab, ac, ae, af, ba,
bc, bf, ec, fa, fc, aac, aba, abc,
abf, aec, afa, afc, bac, baf, bfc,
fac, abac, abfc, afac, bafc

<afbacfc>

a, b, c, f, aa, ab, ac, af, ba, bc,
bf, cc, fa, fc, aac, aba, abc, abf, 
acc, afa, afc, bac, baf, bcc, bfc,
fac, abac, abcc, abfc, afac, bafc

Using the same approach to simplification, another two 
concurrent access patterns can be determined which are
supported by (i) the second & fourth access sequences and (ii) 
the third & fourth access sequences respectively, namely 
CAP2=[abac+abcc] and CAP3=[abac+abfc+afac+bafc].

C. CAP Modelling

The use of graphical representation has led to the 
development of a sequential patterns model (SPG) and web 
access patterns model (WAP-Graph) that explore the inherent 
relationships among sequential patterns and web access 
patterns respectively. The idea is adapted now for modelling 
concurrent access patterns. The definition of WAP-Graph is 
extended to define Concurrent Access Patterns (CAP) Graph 
and followed by an example for illustration.

Definition 5. CAP-Graph is a graphical representation of 
concurrent access patterns denoted by a 7-tuple expressed as 
CAP-Graph=(V, E, S, F, δ, I, O), where the 5-tuple in 
Definition 1 is extended to CAP-Graph with two special types 
of nodes:
6) I is a set of in-link nodes, IV, with two or more incoming 

access relations applied to concurrent paths to allow no 
more than one outgoing access relation.

7) O is a set of out-link nodes, OV, allowing independent 
execution between concurrent paths, modelled by 
connecting two or more outgoing access relations.
These new graphical components are shown in Fig. 5, 

where the ‘+’ represents concurrency in the CAP-Graph.

Fig. 5 CAP-Graph components

In-link nodes synchronise incoming access relations, while 
out-link nodes represent a fork to multiple outgoing relations.

Theorem 1 indicates the direction for a more concise 
representation of CAPs. The features of WAP-Graph make it 
straightforward to model the common prefix/postfix elements; 
therefore concurrent access patterns modelling can use a 
similar construction method and algorithm. The underlying 
difference is that the WAP-Graph procedure considers an 
access pattern from MAPS each time, while CAP-Graph 
construction considers them from a maximal concurrent access 
patterns set. In addition, there are two extra steps needed to 
mark in-link and out-link nodes, which are shown in bold in 
Algorithm 2 below.

Algorithm 2 CAP-Graph Construction Algorithm

Input: An access pattern ap from a maximal concurrent access 
patterns set MaxCAP and a transitional graph model G
Output: New directed graph G after incremental construction
Procedure:

preS=common prefix of ap and G
postS=common postfix of ap and G
elemS=ap-preS-postS
Represent elemS by the directed graph G'
If preS is not empty

{Add a directed edge from the last node of preS in G 
to the first node of G';
Mark the last node of preS as an out-link node}

If postS is not empty
{Add a directed edge from the last node of G' to the 
first node of postS in G;
Mark the first node of postS as an in-link node}

This new directed graph includes a new pattern ap and is 
called G.

Example 5. Using the extension of the WAP-Graph method 
and the CAP-Graph construction algorithm above to model the 
concurrent access pattern CAP3=[abac+abfc+afac+bafc]. 

1. Initialisation. Determine the longest access patterns in 
CAP3 – they all have the same length for this example. 
Represent one of them by a directed graph G – e.g. abfc – see 
Fig. 6(i).

2. Construction. For the next available access pattern, abac
in CAP3, find any common prefix preS with G – this is ab; and 
find any common postfix postS – this is c. Taking out preS and 
postS from abac, the remaining part elemS=a can be 
represented by a directed graph G'. Add a directed edge from 
the last node of preS in G (i.e. b) to the first node of G' (i.e. a) 
and mark b as an out-link node with ‘+’. Also add a directed 
edge from the last node of G' (i.e. a) to the first node of postS
(i.e. c) and mark c as an in-link node with ‘+’. The result of 
this step is the graph shown in Fig. 6(ii), where the dotted lines
represent the new edges in the transitional model.
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Fig. 6 Modelling of CAP3=[abac+abfc+afac+bafc]

3. Iteration. For the remaining access patterns in turn, i.e. 
afac and bafc, construct new graphs in a similar manner: e.g. 
for afac, find any common prefix preS with G – this is a; and 
find any common postfix postS – this is ac. Taking out preS
and postS from afac, the remaining part elemS=f can be 
represented by a directed graph G'. Add a directed edge from 
the last node of preS in G (i.e. a) to the first node of G' (i.e. f) 
and mark a as an out-link node with ‘+’. Also add a directed 
edge from the last node of G' (i.e. f) to the first node of postS
(i.e. a), marking a as an in-link node to give Fig. 6(iii). The
final result or CAP-Graph is represented in Fig. 6(iv).

V. EXPERIMENTS

We examine the effects of the proposed WAP-Graph 
construction, CAP mining and modelling on synthetic and real 
datasets. The method and algorithms are implemented using 
Microsoft Visual C++ where, to mine the web access patterns, 
we use the PrefixSpan algorithm [14]. The executable code is
available from the IlliMine system package, a partially open-
source data mining package: http://illimine.cs.uiuc.edu/, last 
accessed 7 June 2009.

A. Synthetic Dataset

To evaluate the scope of WAP modelling and concurrent 
access patterns mining, we first performed experiments on 
large-scale synthetic datasets. Synthetic sequence data was 
drawn from the IBM Almaden data generator –
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data
_mining/datasets/syndata.html, last accessed 7 June 2009 –

which has been used in many sequential patterns mining and 
web access patterns mining studies [7,14,18]. 

This synthetic dataset generator produces a database of 
sequences whose characteristics can easily be controlled by the 
user. It requires the specification of the average number of 
transactions in a sequence |C|, the average number of items in a 
transaction |T|, the average length of maximal potentially large 
sequences |S|, the number of different items |N| and the number 
of data sequences |D|. 

We generated four datasets for testing and performed web 
access patterns mining on each; the results from modelling 
access patterns for one of them, C10-T8-S8-N1K-D10K, are 
presented below in Table II. This dataset contains 10,000 data 
sequences and 1,000 different items, where the average 
number of items in a transaction (i.e. event) is set to 8 and the 
average number of transactions per data sequence is set to 10.
It can be seen that the number of WAP-Graph components –
nodes and directed edges – increases significantly as minsup
decreases.

TABLE II
WAP-GRAPH COMPONENTS FOR SYNTHETIC DATASET

minsup   APs MAPS Nodes Edges

5% 481 470 450 40
4.5% 557 536 484 88
4% 666 638 530 157

3.5% 881 831 600 317
3% 1268 1187 664 662

2.5% 2135 2003 755 1462
2% 4210 3983 955 3438

1.5% 9718 9400 1328 8663

The CAP mining method was tested on the same dataset 
using seven different minimum supports (i.e. minsup ranging 
from 2% to 5%) and, for each minsup, the minimum 
concurrence (mincon) was set in a corresponding range. Table 
III shows the number of concurrent access patterns mined 
under different minsup and mincon combinations. It 
demonstrates that CAP mining can be used to discover 
concurrency between access patterns, beyond that which web 
access patterns mining is designed to achieve.

TABLE III
CAP NUMBERS UNDER DIFFERENT MINSUP AND MINCON

CAP2 CAP3 CAP4 CAP2 CAP3 CAP4 CAP2 CAP3 CAP4 CAP2 CAP3 CAP4 CAP2 CAP3 CAP4 CAP2 CAP3 CAP4 CAP2 CAP3 CAP4

2% 13731 4417 31 13828 4417 31 13795 4417 31 13761 4417 31 13695 4424 31 13598 4428 31 13446 4439 31

2.5% 7581 1328 2 7581 1328 2 7807 1328 2 7785 1328 2 7738 1328 2 7707 1328 2 7679 1329 2

3% 4535 408 4535 408 4535 408 4649 408 4612 408 4583 408 4563 408

3.5% 2859 150 2859 150 2859 150 2859 150 2891 150 2872 150 2847 150

4% 1835 50 1835 50 1835 50 1835 50 1835 50 1842 50 1827 50

4.5% 1204 18 1204 18 1204 18 1204 18 1204 18 1204 18 1210 18

5% 841 6 841 6 841 6 841 6 841 6 841 6 841 6

mincon 
minsup =5%minsup =4.5%minsup =4%minsup =3.5%minsup =3%minsup =2.5%minsup =2%
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Table III highlights the relationship between mincon and 
minsup: only when minconminsup does a concurrent access 
pattern make sense. This is because both the mincon and 
minsup thresholds can be considered as frequencies for general 
frequent patterns mining – mincon for mining concurrent 
access patterns and minsup for mining web access patterns –
and the former are derived from the latter. Note that, for a 
range of mincon thresholds under a given minsup, the 
concurrent access patterns may be different.

Fig. 7 uses a logarithmic scale to illustrate that the number 
of CAPs decreases exponentially with the increase in mincon
when (e.g.) minsup is 5%.

2% 2.5% 3% 3.5% 4% 4.5% 5%

CAP2 13446 7679 4563 2847 1827 1210 841

CAP3 4439 1329 408 150 50 18 6

CAP4 31 2

1

10

100

1000

10000

100000

N
um

be
r o

f C
A

Ps

mincon

minsup=5%

Fig. 7 Logarithmic curves for CAP2/3/4 numbers

B. Real Dataset

A real-world dataset pertaining to customer web access data 
is used to evaluate the effectiveness of CAP mining and 
modelling under various concurrence thresholds. This dataset 
is obtainable from Blue Martini's Customer Interaction System 
at http://cobweb.ecn.purdue.edu/KDDCUP/, last accessed 7
June 2009. 

Three categories of data, i.e. Customer, Orders and Click-
stream information, are collected by the Blue Martini 
application server and further details are provided in [19]. In 
general, customers can have multiple sessions. Each session 
can have multiple page views and multiple orders, while each 
order can have multiple order lines, and each order line is a 
purchase record of one product with a quantity of one or more. 
We focus on click-stream analysis here.

The web page access dataset, Clicks, was selected from the 
original Blue Martini information and used in the experiments. 
It comprises Request Date, Request Sequence, Content ID
(page ID) and Request Template (web page name), which have 
been extracted from the click-stream information. This dataset 
is 72.8MB in total and contains 234,489 customers, 776,985 
click-streams and 77 web pages. Table IV lists the format and 
sample content of the Clicks data.

TABLE IV
FORMAT/CONTENT OF CLICKS DATASET

Request Date Sequence Request Template Content ID

30/01/2000 1 main/home.jhtml 1389

30/01/2000 2 main/lifestyles.jhtml 8171

30/01/2000 3 main/assortment.jhtml 9897

30/01/2000 1 main/ home.jhtml 1389

30/01/2000 2 main/vendor.jhtml 8263

30/01/2000 3 main/vendor.jhtml 8263

30/01/2000 4 main/vendor.jhtml 8263

30/01/2000 5 main/search_results.jhtml 1425

30/01/2000 6 main/departments.jhtml 9901

30/01/2000 7 main/search_results.jhtml 1425

30/01/2000 8 products/productDetailLegwear.jhtml 10771

30/01/2000 9 products/productDetailLegwear.jhtml 10771

… … … …

01/02/2000 1 main/home.jhtml 1389

01/02/2000 2 main/vendor.jhtml 8263

01/02/2000 3 main/vendor.jhtml 8263

01/02/2000 4 main/vendor.jhtml 8263

01/02/2000 5 main/vendor.jhtml 8263

01/02/2000 6 main/vendor.jhtml 8263

01/02/2000 7 main/assortment.jhtml 9897

01/02/2000 8 products/productDetailLegwear.jhtml 10771

01/02/2000 9 main/vendor.jhtml 8263

… … … …

01/02/2000 22 main/boutique.jhtml 8267

01/02/2000 23 main/boutique.jhtml 8267

… … … …

Access Patterns Mining

Table V illustrates the relationship between minsup and the 
number of web access patterns found in the Clicks dataset
following mining. The table shows the sequences of length k
where, e.g. when minsup=4.5%, there are eight access patterns 
with a unique item, fifteen access patterns with two items and 
four access patterns with three items.

TABLE V
ACCESS PATTERNS UNDER VARIOUS MINSUP

Number of k-sequences
minsup 1-

sequence
2-

sequence
3-

sequence
4-

sequence
5-

sequence
4.5% 8 15 4

4% 9 19 8

3.5% 10 21 14 2

3% 10 25 18 4

2.5% 14 34 32 7 1

2% 17 43 54 22 4

Concurrent Access Patterns Mining

Table VI shows the extent of the concurrent access patterns 
mining results across a range of mincon values, which are set 
equal to minsup in each case.
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TABLE VI
CAP MINING ON THE WEB PAGE ACCESS DATASET

mincon=minsup
CAPk

4.5% 4% 3.5% 3% 2.5% 2%

CAP2 5 7 7 16 33 75

CAP3 1 1 4 9 23

CAP4 2 5

It can be seen from Table VI that, under the same mincon 
and minsup (i.e. 4.5% here), five CAP2 and one CAP3 are 
discovered after performing concurrent access patterns mining; 
these are:

[<9901> + <1389> <8267>]
[<8267> + <1389> <9901>]

[<1389> <10771> + <1389> <8267>]
 [<1389> <9897> + <9897> <9897>]
[<1389> <9897> + <1389> <10771>]

 [<1425> + <9901> + <10771>]

Concurrent Access Patterns Modelling

Using the CAP modelling method, the concurrent access 
patterns above can be represented graphically and three of 
them are shown in Fig. 8.

Fig. 8 CAP-Graphs for CAP2 results

The out-link nodes and in-link node are marked with a ‘+’ 
and connect the concurrent paths. For example, Fig. 8(i) shows 
that at least 4.5% of users requested web pages in this 
behaviour by first accessing page 1389, and then accessing 
pages 10771 and 8267 concurrently. With respect to Fig. 8(ii), 
at least 4.5% of users requested web pages in this behaviour –
they accessed pages 1389 and 9897 concurrently, then 
accessed page 9897 again in other sessions.

This type of information was not readily available when 
access patterns mining was performed on the web data, where 
the following access patterns were obtained: <1389> <10771>, 
<1389> <8267>, <1389> <9897> and <9897> <9897>. 
However, when CAP mining is applied, hidden patterns are 
obtained which can be represented further as in Fig. 9, cross-
referencing with Table IV.

Fig. 9 Comparison of WAP-Graph (top) and CAP-Graph (bottom) 
for the web page access dataset

Fig. 9 shows regular activity when web pages are accessed. 
Fig. 9(i) to (iv) are the result of access patterns mining – in the 
form of WAP-Graph; Fig. 9(v) and (vi) correspond to CAP 
modelling following concurrent access patterns mining – in the 
form of CAP-Graph. It is important to note that there is no 
direct linkage between web pages main/boutique.jhtml and 
products/productDetailLegwear.jhtml for example, but they 
were both accessed through the main/home.jhtml page to form 
a concurrent relationship – these three web pages make up the
new concurrent access pattern as modelled in Fig. 9(v).

It can be seen that CAP mining and modelling can be 
applied in web analysis to search for and represent user 
navigation trails associated with the most frequently accessed 
patterns which display concurrency beyond certain thresholds. 
This demonstrates the potential of concurrent access patterns 
mining, where more complex structural relationships can be 
discovered and modelled from web usage data.

VI. CONCLUSIONS

Web data mining aims to discover useful information from 
web pages, hyperlink structures and usage logs [1]. 
Consequently, web mining tasks are usually categorised into 
three main types: web content mining, web structure mining 
and web usage mining. Searching for access patterns is one 
aspect of web usage mining and the work presented here has 
developed this further in the context of web access patterns 
post-processing, where we outline a corresponding framework
below.

Traditional web access patterns mining is performed first on 
the web access sequence database and the resulting access 
patterns are taken as input to web access patterns post-
processing – boxed area of Fig. 10.
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Fig. 10 Web access patterns post-processing framework

One branch of the post-processing is access patterns 
modelling, which constructs the graphical representation for 
web access patterns called WAP-Graph (section III). The other 
branch pursues mining of concurrency relationships from 
access patterns and the result is called Concurrent Access 
Patterns (CAP). Fig. 10 shows that WAP-Graph provides a 
bridge to CAP modelling, where the former construction 
approach is extended to represent the concurrent access 
patterns and called CAP-Graph (section IV). The experiments
on synthetic sequence and real web access data have 
demonstrated that CAP mining and modelling are suitable for 
predictive tasks in web usage mining (section V).

There is not necessarily a boundary between web content 
mining, web structure mining and web usage mining. For 
example, web structure can be treated as part of web content
and web usage can be considered to belong to web structure 
[4]. It follows that web content, structure and usage mining can 
all be pursued separately or combined together in a single 
application. Thus, the approach proposed in this paper can 
potentially be applied in web structure mining to deal with the 
structure of hyperlinks across the Internet. The objects in this 
case are web pages and links are either in-, out- or co-citation, 
where two web pages are linked to from the same page [20].
Co-citation can be represented by a concurrency relationship 
in CAP modelling; while in- is equivalent to the in-link node
of CAP-Graph; and out- corresponds to the out-link node.

The potential remains for the extension of web access 
patterns post-processing to embrace other structural relation 
patterns [16] where, for example, the concept of exclusive 
access patterns may have a specific application. This would 
imply further data mining and modelling techniques to 
discover novel patterns from the web through its content, 
structure and usage.
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