Search results for: Flow pattern
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3079

Search results for: Flow pattern

289 Changing Patterns of Colorectal Cancer in Hail Region

Authors: Laila Salah Seada, Ashraf Ibrahim, Fawaz Al Rashid, Ihab Abdo, Hassan Kasim, Waleed Al Mansi, Saud Al Shabli

Abstract:

Background and Objectives: Colorectal carcinoma is increasing among both men and women worldwide. It has a multifactorial etiology including genetic factors, environmental factors and inflammatory conditions of the digestive tract. A clinicopathologic assessment of colorectal carcinoma in Hail region is done, considering any changing patterns in two 5-year periods from 2005-2009 (A) and from 2012 to 2017 (B). All data had been retrieved from histopathology files of King Khalid Hospital, Hail. Results: During period (A), 75 cases were diagnosed as colorectal carcinoma. Male patients comprised 56/75 (74.7%) of the study, with a mean age of 58.4 (36-97), while females were 19/75 (25.3%) with a mean age of 50.3(30-85) and the difference was significant (p = 0.05). M:F ratio was 2.9:1. Most common histological type was adenocarcioma in 68/75 (90.7%) patients mostly well differentiated in 44/68 (64.7%). Mucinous neoplasms comprised only 7/75 (9.3%) of cases and tended to have a higher stage (p = 0.04). During period (B), 115 cases were diagnosed with an increase of 53.3% in number of cases than period (A). Male to female ratio also decreased to 1.35:1, females being 44.83% more affected. Adenocarcinoma remained the prevalent type (93.9%), while mucinous type was still rare (5.2%). No distal metastases found at time of presentation. Localization of tumors was rectosigmoid in group (A) in 41.4%, which increased to 56.6% in group (B), with an increase of 15.2%. Iliocecal location also decreased from 8% to 3.5%, being 56.25% less. Other proximal areas of the colon were decreased by 25.75%, from 53.9% in group (A) to 40% in group (B). Conclusion: Colorectal carcinoma in Hail region has increased by 53.3% in the past 5 years, with more females being diagnosed. Localization has also shifted distally by 15.2%. These findings are different from Western world patterns which experienced a decrease in incidence and proximal shift of the colon cancer localization. This might be due to better diagnostic tools, population awareness of the disease, as well as changing of life style and/or food habits in the region.

Keywords: Colorectal cancer, Hail Region, changing pattern, distal shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
288 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed

Abstract:

High Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20- 60 and 6-18 μg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 μg/ml and for 6S were 0.3672 and 1.2238 μg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: Ginger, 6-gingerol, HPLC, 6-shogaol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3376
287 Large Eddy Simulation of Compartment Fire with Gas Combustible

Authors: Mliki Bouchmel, Abbassi Mohamed Ammar, Kamel Geudri, Chrigui Mouldi, Omri Ahmed

Abstract:

The objective of this work is to use the Fire Dynamics Simulator (FDS) to investigate the behavior of a kerosene small-scale fire. FDS is a Computational Fluid Dynamics (CFD) tool developed specifically for fire applications. Throughout its development, FDS is used for the resolution of practical problems in fire protection engineering. At the same time FDS is used to study fundamental fire dynamics and combustion. Predictions are based on Large Eddy Simulation (LES) with a Smagorinsky turbulence model. LES directly computes the large-scale eddies and the sub-grid scale dissipative processes are modeled. This technique is the default turbulence model which was used in this study. The validation of the numerical prediction is done using a direct comparison of combustion output variables to experimental measurements. Effect of the mesh size on the temperature evolutions is investigated and optimum grid size is suggested. Effect of width openings is investigated. Temperature distribution and species flow are presented for different operating conditions. The effect of the composition of the used fuel on atmospheric pollution is also a focus point within this work. Good predictions are obtained where the size of the computational cells within the fire compartment is less than 1/10th of the characteristic fire diameter.

Keywords: Large eddy simulation, Radiation, Turbulence, combustion, pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
286 Effect of Valve Pressure Drop in Exergy Analysis of C2+ Recovery Plants Refrigeration Cycles

Authors: B. Tirandazi, M. Mehrpooya, A. Vatani

Abstract:

This paper provides an exergy analysis of the multistage refrigeration cycle used for C2+ recovery plant. The behavior of an industrial refrigeration cycle with refrigerant propane has been investigated by the exergy method. A computational model based on the exergy analysis is presented for the investigation of the effects of the valves on the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. An ethane recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 39.90% indicating a great potential for improvements. The simulation results reveal that the exergetic efficiencies of the heat exchanger and expansion sections get the lowest rank among the other compartments of refrigeration cycle. Refrigeration calculations have been carried out through the analysis of T–S and P–H diagrams where coefficient of performance (COP) was obtained as 1.85. The novelty of this article includes the effect and sensitivity analysis of molar flow, pressure drops and temperature on the exergy efficiency and coefficient of performance of the cycle.

Keywords: exergy; Valve; CRP; refrigeration cycle; propane refrigerant; C2+ Recovery; Ethane Recovery;.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
285 Heavy Metals Transport in the Soil Profiles under the Application of Sludge and Wastewater

Authors: A. Behbahaninia, S. A. Mirbagheri, A. H. Javid

Abstract:

Heavy metal transfer in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban area of developing countries. In this study soil samples under sludge application and wastewater irrigation were studied and soil samples were collected in the soil profiles from the surface to 100 cm in depth. For this purpose, three plots were made in a treatment plant in south of Tehran-Iran. First plot was irrigated just with effluent from wastewater treatment plant, second plot with simulated heavy metals concentration equal 50 years irrigation and in third plot sewage sludge and effluent was used. Trace metals concentration (Cd, Cu) were determined for soil samples. The results indicate movement of metals was observed, but the most concentration of metals was found in topsoil samples. The most of Cadmium concentration was measured in the topsoil of plot 3, 4.5mg/kg and Maximum cadmium movement was observed in 0-20 cm. The most concentration of copper was 27.76mg/kg, and maximum percolation in 0-20 cm. Metals (Cd, Cu) were measured in leached water. Preferential flow and metal complexation with soluble organic apparently allow leaching of heavy metals.

Keywords: Heavy metal, sludge, soil, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
284 Oxygen Transfer by Multiple Inclined Plunging Water Jets

Authors: Surinder Deswal

Abstract:

There has been a growing interest in the oxygenation by plunging water jets in the last few years due to their inherent advantages, like energy-efficient, low operation cost, etc. Though a lot of work has been reported on the oxygen-transfer by single plunging water jets but very few studies have been carried out using multiple plunging jets. In this paper, volumetric oxygen-transfer coefficient and oxygen-transfer efficiency has been studied experimentally for multiple inclined plunging jets (having jet plunge angle of 60 0 ) in a pool of water for different configurations, in terms of varying number of jets and jet diameters. This research suggests that the volumetric oxygen-transfer coefficient and oxygentransfer efficiency of the multiple inclined plunging jets for air-water system are significantly higher than those of a single vertical as well as inclined plunging jet for same flow area and other similar conditions. The study also reveals that the oxygen-transfer increase with increase in number of multiple jets under similar conditions, which will be most advantageous and energy-efficient in practical situations when large volumes of wastewaters are to be treated. A relationship between volumetric oxygen-transfer coefficient and jet parameters is also proposed. The suggested relationship predicts the volumetric oxygen-transfer coefficient for multiple inclined plunging jet(s) within a scatter of ±15 percent. The relationship will be quite useful in scale-up and in deciding optimum configuration of multiple inclined plunging jet aeration system.

Keywords: Multiple inclined plunging jets, jet plunge angle, volumetric oxygen-transfer coefficient, oxygen-transfer efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
283 Characterization of Penicillin V Acid and Its Related Compounds by HPLC

Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul

Abstract:

Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.

Keywords: Penicillin V acid, characterization, related substances, HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
282 Study of Heat Transfer in the Poly Ethylene Fluidized Bed Reactor Numerically and Experimentally

Authors: Mahdi Hamzehei

Abstract:

In this research, heat transfer of a poly Ethylene fluidized bed reactor without reaction were studied experimentally and computationally at different superficial gas velocities. A multifluid Eulerian computational model incorporating the kinetic theory for solid particles was developed and used to simulate the heat conducting gas–solid flows in a fluidized bed configuration. Momentum exchange coefficients were evaluated using the Syamlal– O-Brien drag functions. Temperature distributions of different phases in the reactor were also computed. Good agreement was found between the model predictions and the experimentally obtained data for the bed expansion ratio as well as the qualitative gas–solid flow patterns. The simulation and experimental results showed that the gas temperature decreases as it moves upward in the reactor, while the solid particle temperature increases. Pressure drop and temperature distribution predicted by the simulations were in good agreement with the experimental measurements at superficial gas velocities higher than the minimum fluidization velocity. Also, the predicted time-average local voidage profiles were in reasonable agreement with the experimental results. The study showed that the computational model was capable of predicting the heat transfer and the hydrodynamic behavior of gas-solid fluidized bed flows with reasonable accuracy.

Keywords: Gas-solid flows, fluidized bed, Hydrodynamics, Heat transfer, Turbulence model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
281 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.

Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
280 A Group Setting of IED in Microgrid Protection Management System

Authors: Jyh-Cherng Gu, Ming-Ta Yang, Chao-Fong Yan, Hsin-Yung Chung, Yung-Ruei Chang, Yih-Der Lee, Chen-Min Chan, Chia-Hao Hsu

Abstract:

There are a number of Distributed Generations (DGs) installed in microgrid, which may have diverse path and direction of power flow or fault current. The overcurrent protection scheme for the traditional radial type distribution system will no longer meet the needs of microgrid protection. Integrating the Intelligent Electronic Device (IED) and a Supervisory Control and Data Acquisition (SCADA) with IEC 61850 communication protocol, the paper proposes a Microgrid Protection Management System (MPMS) to protect power system from the fault. In the proposed method, the MPMS performs logic programming of each IED to coordinate their tripping sequence. The GOOSE message defined in IEC 61850 is used as the transmission information medium among IEDs. Moreover, to cope with the difference in fault current of microgrid between grid-connected mode and islanded mode, the proposed MPMS applies the group setting feature of IED to protect system and robust adaptability. Once the microgrid topology varies, the MPMS will recalculate the fault current and update the group setting of IED. Provided there is a fault, IEDs will isolate the fault at once. Finally, the Matlab/Simulink and Elipse Power Studio software are used to simulate and demonstrate the feasibility of the proposed method.

Keywords: IEC 61850, IED, Group Setting, Microgrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
279 A Comprehensive CFD Model for Sugar-Cane Bagasse Heterogeneous Combustion in a Grate Boiler System

Authors: Daniel J. O. Ferreira, Juan H. Sosa-Arnao, Bruno C. Moreira, Leonardo P. Rangel, Song W. Park

Abstract:

The comprehensive CFD models have been used to represent and study the heterogeneous combustion of biomass. In the present work, the operation of a global flue gas circuit in the sugarcane bagasse combustion, from wind boxes below primary air grate supply, passing by bagasse insertion in swirl burners and boiler furnace, to boiler bank outlet is simulated. It uses five different meshes representing each part of this system located in sequence: wind boxes and grate, boiler furnace, swirl burners, superheaters and boiler bank. The model considers turbulence using standard k-ε, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller- Naumann model. The results showed good agreement with expected behavior found in literature and equipment design. The more detailed results view in separated parts of flue gas system allows observing some flow behaviors that cannot be represented by usual simplifications like bagasse supply under homogeneous axial and rotational vectors and others that can be represented using new considerations like the representation of 26 thousand grate orifices by 144 rectangular inlets.

Keywords: Comprehensive CFD model, sugar-cane bagasse combustion, sugar-cane bagasse grate boiler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
278 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network

Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee

Abstract:

The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.

Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
277 Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity

Authors: Maribel G. Guzmán, Jean Dille, Stephan Godet

Abstract:

Silver nanoparticles were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and hydrazine hydrate as a reducing agent. The formation of the silver nanoparticles was monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of silver nanopart├¡cles by exhibing the typical surface plasmon absorption maxima at 418-420 nm from the UV–Vis spectrum. Comparison of theoretical (Mie light scattering theory) and experimental results showed that diameter of silver nanoparticles in colloidal solution is about 60 nm. We have used energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and, UV–Vis spectroscopy to characterize the nanoparticles obtained. The energy-dispersive spectroscopy (EDX) of the nanoparticles dispersion confirmed the presence of elemental silver signal no peaks of other impurity were detected. The average size and morphology of silver nanoparticles were determined by transmission electron microscopy (TEM). TEM photographs indicate that the nanopowders consist of well dispersed agglomerates of grains with a narrow size distribution (40 and 60 nm), whereas the radius of the individual particles are between 10 and 20 nm. The synthesized nanoparticles have been structurally characterized by X-ray diffraction and transmission high-energy electron diffraction (HEED). The peaks in the XRD pattern are in good agreement with the standard values of the face-centered-cubic form of metallic silver (ICCD-JCPDS card no. 4-0787) and no peaks of other impurity crystalline phases were detected. Additionally, the antibacterial activity of the nanopart├¡culas dispersion was measured by Kirby-Bauer method. The nanoparticles of silver showed high antimicrobial and bactericidal activity against gram positive bacteria such as Escherichia Coli, Pseudimonas aureginosa and staphylococcus aureus which is a highly methicillin resistant strain.

Keywords: Silver nanoparticles, surface plasmon, UV-Vis absorption spectrum, chemicals reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12964
276 Analysis of Hard Turning Process of AISI D3-Thermal Aspects

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of  hard turning by using commercial software DEFORM 3D has been compared to experimental results of  stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.

Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
275 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan

Abstract:

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor, Armenia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
274 Moving Area Filter to Detect Object in Video Sequence from Moving Platform

Authors: Sallama Athab, Hala Bahjat

Abstract:

Detecting object in video sequence is a challenging mission for identifying, tracking moving objects. Background removal considered as a basic step in detected moving objects tasks. Dual static cameras placed in front and rear moving platform gathered information which is used to detect objects. Background change regarding with speed and direction moving platform, so moving objects distinguished become complicated. In this paper, we propose framework allows detection moving object with variety of speed and direction dynamically. Object detection technique built on two levels the first level apply background removal and edge detection to generate moving areas. The second level apply Moving Areas Filter (MAF) then calculate Correlation Score (CS) for adjusted moving area. Merging moving areas with closer CS and marked as moving object. Experiment result is prepared on real scene acquired by dual static cameras without overlap in sense. Results showing accuracy in detecting objects compared with optical flow and Mixture Module Gaussian (MMG), Accurate ratio produced to measure accurate detection moving object.

Keywords: Background Removal, Correlation, Mixture Module Gaussian, Moving Platform, Object Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
273 Turbulent Mixing and its Effects on Thermal Fatigue in Nuclear Reactors

Authors: Eggertson, E.C. Kapulla, R, Fokken, J, Prasser, H.M.

Abstract:

The turbulent mixing of coolant streams of different temperature and density can cause severe temperature fluctuations in piping systems in nuclear reactors. In certain periodic contraction cycles these conditions lead to thermal fatigue. The resulting aging effect prompts investigation in how the mixing of flows over a sharp temperature/density interface evolves. To study the fundamental turbulent mixing phenomena in the presence of density gradients, isokinetic (shear-free) mixing experiments are performed in a square channel with Reynolds numbers ranging from 2-500 to 60-000. Sucrose is used to create the density difference. A Wire Mesh Sensor (WMS) is used to determine the concentration map of the flow in the cross section. The mean interface width as a function of velocity, density difference and distance from the mixing point are analyzed based on traditional methods chosen for the purposes of atmospheric/oceanic stratification analyses. A definition of the mixing layer thickness more appropriate to thermal fatigue and based on mixedness is devised. This definition shows that the thermal fatigue risk assessed using simple mixing layer growth can be misleading and why an approach that separates the effects of large scale (turbulent) and small scale (molecular) mixing is necessary.

Keywords: Concentration measurements, Mixedness, Stablystratified turbulent isokinetic mixing layer, Wire mesh sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
272 The Impacts of Food Safety Standards on China Export of Vegetables and Fruits

Authors: Lei Dou, Mitsuhiro Nakagawa, Fei Yan, Ping Li

Abstract:

Participation in global trade means that Chinas vegetables and fruits industry faces international food safety standards and increased scrutiny worldwide. The objectives of this paper were to investigate how existing food safety standards and regulations in the importing countries impact the export of vegetables and fruits from China. This paper discussed the current and historical situations of Chinas vegetables and fruits export from 1996 to 2010, analyzed the Maximum Residual Limit (MRL) standards of pesticides imposed by importing countries, quantitatively estimated the impacts of food safety standards on Chinas vegetables and fruits export based on a gravity model. The results showed that although transportation distance between trade partners and tariff rates on vegetables and fruits were still the importantly resistant factors for China export, vegetables and fruits export was sensitive to the number of regulated pesticides, the strictness, and the level of food safety standards imposed by importing countries, which showed a significant trade flow effect, stricter food safety standards, increased number of regulated pesticides significantly inhibit China export of vegetables and fruits. Moreover, Chinas food safety standards also showed a significantly effect on vegetables and fruits export, which inhibited export to some extent. KeywordsFood safety standards, MRL, Vegetables, Fruits, Export.

Keywords: Food safety standards, MRL, Vegetables, Fruits, Export.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3186
271 Evolution of the Hydrogen Atom: An Alternative to the Big Bang Theory

Authors: Ghassan H. Halasa

Abstract:

Elementary particles are created in pairs of equal and opposite momentums at a reference frame at the speed of light. The speed of light reference frame is viewed as a point in space as observed by observer at rest. This point in space is the bang location of the big bang theory. The bang in the big bang theory is not more than sustained flow of pairs of positive and negative elementary particles. Electrons and negative charged elementary particles are ejected from this point in space at velocities faster than light, while protons and positively charged particles obtain velocities lower than light. Subsonic masses are found to have real and positive charge, while supersonic masses are found to be negative and imaginary indicating that the two masses are of different entities. The electron-s super-sonic speed, as viewed by rest observer was calculated and found to be less than the speed of light and is little higher than the electron speed in Bohr-s orbit. The newly formed hydrogen gas temperature was found to be in agreement with temperatures found on newly formed stars. Universe expansion was found to be in agreement. Partial mass and charge elementary particles and particles with momentum only were explained in the context of this theoretical approach.

Keywords: Evolution of Matter, Multidimensional spaces, relativity, Big Bang Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
270 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi

Abstract:

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Keywords: Acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
269 Isolation and Probiotic Characterization of Arsenic-Resistant Lactic Acid Bacteria for Uptaking Arsenic

Authors: Jatindra N. Bhakta, Kouhei Ohnishi, Yukihiro Munekage, Kozo Iwasaki

Abstract:

The growing health hazardous impact of arsenic (As) contamination in environment is the impetus of the present investigation. Application of lactic acid bacteria (LAB) for the removal of toxic and heavy metals from water has been reported. This study was performed in order to isolate and characterize the Asresistant LAB from mud and sludge samples for using as efficient As uptaking probiotic. Isolation of As-resistant LAB colonies was performed by spread plate technique using bromocresol purple impregnated-MRS (BP-MRS) agar media provided with As @ 50 μg/ml. Isolated LAB were employed for probiotic characterization process, acid and bile tolerance, lactic acid production, antibacterial activity and antibiotic tolerance assays. After As-resistant and removal characterizations, the LAB were identified using 16S rDNA sequencing. A total of 103 isolates were identified as As-resistant strains of LAB. The survival of 6 strains (As99-1, As100-2, As101-3, As102-4, As105-7, and As112-9) was found after passing through the sequential probiotic characterizations. Resistant pattern pronounced hollow zones at As concentration >2000 μg/ml in As99-1, As100-2, and As101-3 LAB strains, whereas it was found at ~1000 μg/ml in rest 3 strains. Among 6 strains, the As uptake efficiency of As102-4 (0.006 μg/h/mg wet weight of cell) was higher (17 – 209%) compared to remaining LAB. 16S rDNA sequencing data of 3 (As99- 1, As100-2, and As101-3) and 3 (As102-4, As105-7, and As112-9) LAB strains clearly showed 97 to 99% (340 bp) homology to Pediococcus dextrinicus and Pediococcus acidilactici, respectively. Though, there was no correlation between the metal resistant and removal efficiency of LAB examined but identified elevated As removing LAB would probably be a potential As uptaking probiotic agent. Since present experiment concerned with only As removal from pure water, As removal and removal mechanism in natural condition of intestinal milieu should be assessed in future studies.

Keywords: Lactic acid bacteria, As-resistant, characterization, Pediococcus sp., As removal probiotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
268 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm

Authors: Tahseen Al-Shaikhli, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin

Abstract:

A concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. Furthermore, the objectives are to control the coordination problem which mainly depends on offset selection, and to estimate the uniform delay based on the offset choice at each signalized intersection. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show that the derived model minimizes the total uniform delay to almost half compared to conventional models; the mathematical objective function is robust; the algorithm convergence time is fast.

Keywords: Area traffic control, differential evolution, offset variable, sinusoidal periodic function, traffic flow, uniform delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 275
267 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation

Authors: Aicha Majda, Abdelhamid El Hassani

Abstract:

Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.

Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
266 Time Domain and Frequency Domain Analyses of Measured Metocean Data for Malaysian Waters

Authors: Duong Vannak, Mohd Shahir Liew, Guo Zheng Yew

Abstract:

Data of wave height and wind speed were collected from three existing oil fields in South China Sea – offshore Peninsular Malaysia, Sarawak and Sabah regions. Extreme values and other significant data were employed for analysis. The data were recorded from 1999 until 2008. The results show that offshore structures are susceptible to unacceptable motions initiated by wind and waves with worst structural impacts caused by extreme wave heights. To protect offshore structures from damage, there is a need to quantify descriptive statistics and determine spectra envelope of wind speed and wave height, and to ascertain the frequency content of each spectrum for offshore structures in the South China Sea shallow waters using measured time series. The results indicate that the process is nonstationary; it is converted to stationary process by first differencing the time series. For descriptive statistical analysis, both wind speed and wave height have significant influence on the offshore structure during the northeast monsoon with high mean wind speed of 13.5195 knots ( = 6.3566 knots) and the high mean wave height of 2.3597 m ( = 0.8690 m). Through observation of the spectra, there is no clear dominant peak and the peaks fluctuate randomly. Each wind speed spectrum and wave height spectrum has its individual identifiable pattern. The wind speed spectrum tends to grow gradually at the lower frequency range and increasing till it doubles at the higher frequency range with the mean peak frequency range of 0.4104 Hz to 0.4721 Hz, while the wave height tends to grow drastically at the low frequency range, which then fluctuates and decreases slightly at the high frequency range with the mean peak frequency range of 0.2911 Hz to 0.3425 Hz.

Keywords: Metocean, Offshore Engineering, Time Series, Descriptive Statistics, Autospectral Density Function, Wind, Wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3632
265 Numerical Study of Natural Convection Effects in Latent Heat Storage using Aluminum Fins and Spiral Fillers

Authors: Lippong Tan, Yuenting Kwok, Ahbijit Date, Aliakbar Akbarzadeh

Abstract:

A numerical investigation has carried out to understand the melting characteristics of phase change material (PCM) in a fin type latent heat storage with the addition of embedded aluminum spiral fillers. It is known that melting performance of PCM can be significantly improved by increasing the number of embedded metallic fins in the latent heat storage system but to certain values where only lead to small improvement in heat transfer rate. Hence, adding aluminum spiral fillers within the fin gap can be an option to improve heat transfer internally. This paper presents extensive computational visualizations on the PCM melting patterns of the proposed fin-spiral fillers configuration. The aim of this investigation is to understand the PCM-s melting behaviors by observing the natural convection currents movement and melting fronts formation. Fluent 6.3 simulation software was utilized in producing twodimensional visualizations of melting fractions, temperature distributions and flow fields to illustrate the melting process internally. The results show that adding aluminum spiral fillers in Fin type latent heat storage can promoted small but more active natural convection currents and improve melting of PCM.

Keywords: Phase change material, thermal enhancement, aluminum spiral fillers, fins

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3366
264 Study of Landslide Behavior with Topographic Monitoring and Numerical Modeling

Authors: ZerarkaHizia, Akchiche Mustapha, Prunier Florent

Abstract:

Landslide of Ain El Hammam (AEH) has been an old slip since 1969; it was reactivated after an intense rainfall period in 2008 where it presents a complex shape and affects broad areas. The schist of AEH is more or less altered; the alteration is facilitated by the fracturing of the rock in its upper part, the presence of flowing water as well as physical and chemical mechanisms of desegregation in joint of altered schist. The factors following these instabilities are mostly related to the geological formation, the hydro-climatic conditions and the topography of the region. The city of AEH is located on the top of a steep slope at 50 km from the city of TiziOuzou (Algeria). AEH’s topographic monitoring of unstable slope allows analyzing the structure and the different deformation mechanism and the gradual change in the geometry, the direction of change of slip. It also allows us to delimit the area affected by the movement. This work aims to study the behavior of AEH landslide with topographic monitoring and to validate the results with numerical modeling of the slip site, when the hydraulic factors are identified as the most important factors for the reactivation of this landslide. With the help of the numerical code PLAXIS 2D and PlaxFlow, the precipitations and the steady state flow are modeled. To identify the mechanism of deformation and to predict the spread of the AEH landslide numerically, we used the equivalent deviatory strain, and these results were visualized by MATLAB software.

Keywords: Equivalent deviatory strain, landslide, numerical modeling, topographic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
263 MATLAB-based System for Centralized Monitoring and Self Restoration against Fiber Fault in FTTH

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a MATLAB-based system named Smart Access Network Testing, Analyzing and Database (SANTAD), purposely for in-service transmission surveillance and self restoration against fiber fault in fiber-to-the-home (FTTH) access network. The developed program will be installed with optical line terminal (OLT) at central office (CO) to monitor the status and detect any fiber fault that occurs in FTTH downwardly from CO towards residential customer locations. SANTAD is interfaced with optical time domain reflectometer (OTDR) to accumulate every network testing result to be displayed on a single computer screen for further analysis. This program will identify and present the parameters of each optical fiber line such as the line's status either in working or nonworking condition, magnitude of decreasing at each point, failure location, and other details as shown in the OTDR's screen. The failure status will be delivered to field engineers for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: MATLAB, SANTAD, in-service transmission surveillance, self restoration, fiber fault, FTTH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
262 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
261 Effect of Shallow Groundwater Table on the Moisture Depletion Pattern in Crop Root Zone

Authors: Vijay Shankar

Abstract:

Different techniques for estimating seasonal water use from soil profile water depletion frequently do not account for flux below the root zone. Shallow water table contribution to supply crop water use may be important in arid and semi-arid regions. Development of predictive root uptake models, under influence of shallow water table makes it possible for planners to incorporate interaction between water table and root zone into design of irrigation projects. A model for obtaining soil moisture depletion from root zone and water movement below it is discussed with the objective to determine impact of shallow water table on seasonal moisture depletion patterns under water table depth variation, up to the bottom of root zone. The role of different boundary conditions has also been considered. Three crops: Wheat (Triticum aestivum), Corn (Zea mays) and Potato (Solanum tuberosum), common in arid & semi-arid regions, are chosen for the study. Using experimentally obtained soil moisture depletion values for potential soil moisture conditions, moisture depletion patterns using a non linear root uptake model have been obtained for different water table depths. Comparative analysis of the moisture depletion patterns under these conditions show a wide difference in percent depletion from different layers of root zone particularly top and bottom layers with middle layers showing insignificant variation in moisture depletion values. Moisture depletion in top layer, when the water table rises to root zone increases by 19.7%, 22.9% & 28.2%, whereas decrease in bottom layer is 68.8%, 61.6% & 64.9% in case of wheat, corn & potato respectively. The paper also discusses the causes and consequences of increase in moisture depletion from top layers and exceptionally high reduction in bottom layer, and the possible remedies for the same. The numerical model developed for the study can be used to help formulating irrigation strategies for areas where shallow groundwater of questionable quality is an option for crop production.

Keywords: Moisture Depletion, crop root zone, ground water table, irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
260 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: Asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378