Search results for: MARD
3 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network
Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee
Abstract:
The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.
Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14042 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.
Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11841 ELISA Based hTSH Assessment Using Two Sensitive and Specific Anti-hTSH Polyclonal Antibodies
Authors: Maysam Mard-Soltani, Mohamad Javad Rasaee, Saeed Khalili, Abdol Karim Sheikhi, Mehdi Hedayati
Abstract:
Production of specific antibody responses against hTSH is a cumbersome process due to the high identity between the hTSH and the other members of the glycoprotein hormone family (FSH, LH and HCG) and the high identity between the human hTSH and host animals for antibody production. Therefore, two polyclonal antibodies were purified against two recombinant proteins. Four possible ELISA tests were designed based on these antibodies. These ELISA tests were checked against hTSH and other glycoprotein hormones, and their sensitivity and specificity were assessed. Bioinformatics tools were used to analyze the immunological properties. After the immunogen region selection from hTSH protein, c terminal of B hTSH was selected and applied. Two recombinant genes, with these cut pieces (first: two repeats of C terminal of B hTSH, second: tetanous toxin+B hTSH C terminal), were designed and sub-cloned into the pET32a expression vector. Standard methods were used for protein expression, purification, and verification. Thereafter, immunizations of the white New Zealand rabbits were performed and the serums of them were used for antibody titration, purification and characterization. Then, four ELISA tests based on two antibodies were employed to assess the hTSH and other glycoprotein hormones. The results of these assessments were compared with standard amounts. The obtained results indicated that the desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for in vivo immunization. The raised antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum. Among the four designed tests, the test in which the antibody against first protein was used as capture antibody, and the antibody against second protein was used as detector antibody did not show any hook effect up to 50 miu/l. Both proteins have the ability to induce highly sensitive and specific antibody responses against the hTSH. One of the antibody combinations of these antibodies has the highest sensitivity and specificity in hTSH detection.
Keywords: hTSH, bioinformatics, protein expression, cross reactivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202