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Multi-Rate Exact Discretization based on
Diagonalization of aLinear System
- A Multiple-Real-Eigenvalue Case

T. Sakamoto and N. Hori

Abstract—A multi-rate discrete-time model, whose response
agrees exactly with that of a continuous-time original at all sampling
instants for any sampling periods, is developed for a linear system,
which is assumed to have multiple real eigenvalues. The sampling
rates can be chosen arbitrarily and individually, so that their ratios
can even be irrationa. The state space model is obtained as a
combination of alinear diagonal state equation and a nonlinear output
equation. Unlike the usua lifted model, the order of the proposed
mode is the same as the number of sampling rates, which is less than
or equal to the order of the original continuous-time system. The
method is based on a nonlinear variable transformation, which can be
considered as a generdization of linear similarity transformation,
which cannot be applied to systems with multiple eigenvalues in
general. An example and its simulation result show that the proposed
multi-rate mode gives exact responses at al sampling instants.
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l. INTRODUCTION

DISCRETIZATION techniques are useful in a variety of areas
including digital signals processing, measurement, systems
analysis, and digital control [1],[2]. Signals with a wide range of
frequencies often calls for the use of multiple sampling periods,
where al state variables are sampled at different rates depending on
their frequency components. Convenient tools are readily available
for smulation studies [3], where a discrete-time lifting technique [4]
is used. Although they are highly useful for simulation and
evaluations of multi-rate designs, they are not necessarily a simple
model for analysis or implementation. While a substantial increasein
the order of lifted model may be accommodated in simulations, thisis
usualy not the case in the analyses and implementation of digital
controllers. Furthermore, sampled signals form an approximation
model of the original system and exactness is often not pursued.
Although these may specific only for digital controllers, requirements
for low order and exactness are nevertheless important. Exact
discretization, where the response of the discretized model matches
exactly that of the original continuous-time system, is well known for
single-rate case [5]. The approach used in the present paper is to
transform the given system into a diagonal form for which this
discretization technique can be applied.
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Diagonalization of system matrices plays important roles in the
analysis and synthesis of linear systems. For instance, such systems
tend to have better numerical properties and can be achieved by
similarity transformation [6]. In the control perspective, system
decoupling followed by state feedback achieves arbitrary
diagondization [7]. This may be considered as a variable
transformation and has inspired the use of exponential transformation
in [8], where a sufficient condition for exact linearization of
nonlinear systems is presented. This method is applied to exact
single-rate discretization of a nonlinear system in [8]. Thisis applied
in the present paper to exact multi-rate discretization of a linear
system with multiple real eigenvalues.

The paper is organized as follows: In Section 2, a second-order
system with double eigenvaluesiis used to explain the concept and its
triangular transformation is reviewed. The triangular system is then
diagonalized, where the inverse transformation that was necessary in
[4] is avoided. In Section 3, the resulting system with arbitrary
eigenvalues is discretized exactly using multiple (including single)
sampling rates. In Section 4, an example is presented with a
simulation result. Section 5 presents conclusions.

Il.  DIAGONALIZATION OF A LINEAR SYSTEM WITH MULTIPLE
REAL EIGENVALUES

The goal of this section is to find a variable transformation for
converting a given linear system with multiple real eigenvaluesinto a
diagona system with arbitrary eigenvalues. This is to be carried in
three steps. The first is to transform the system into a triangular
system, which is always possible using a similarity transformation.
The second is to convert the triangular system into a diagonal system
with fixed multiple real eigenvaues. The third is to introduce a new
one-to-one mapping to transform the diagona system into another
with arbitrary and possibly distinct real eigenvalues. In the following,
these are explained for a second-order case for ease of exposition.

A. The System
Let the linear time-invariant system with double and rea
eigenvalues be given by
[561] _ [‘111 4112] [xl] [x1(0)] _ [x10]
X, az1 Gzl 1x21" |x,(0) X20
where x; and x, are the state variables with their initial conditions

given by x;0and x, and a; are constant coefficients. The eigenvalues
of this system are assumed to be double, so that

M

(all - a22)2 +4a,,a,, = 0. 2
The eigenvalues are given, therefore, by
1= a ‘;azz. 3)

It is assumed that the system is not triangular, which implies that
ai1 # Ay, , Snce otherwise parameters would be a, =0 or
a,, = 0 or both, indicating that the system is triangular. If the given
system is aready triangular, the first step explained next is omitted.
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B. Triangularization

The first step is to transform system (1) into iangular system
using a standard similarity transformation [6]. L#te desired
triangular system be given by | A+ Eevz_vl]

v, v, _[ A
R 7O Tigy t g,
Vs 0 A2l ly, (0
which is a Lagrange partial differential equati®j.[A number of

wherey, andy, are the state variables with their initial conmi8  ethods exist to solve this equation and a methocharacteristic

given byysoandy,,. Parametere is a non-zero constant and may beyrves is used in the present study. The charatitesiquations are
set to unity, andi is the eigenvalue given by (3), since they shoulgﬂ\,en by

remain the same under similarity transformatiorshibuld be noted
that the lower triangular form works just as waltlnis section.

Using (9) and (10), this can be rewritten as

(12)
_ }’10]

~ 2o Q)

dvy _dzy _dz

oo . A+ee”"" " ¢z  cz,
The similarity transform of the form given by idvz dz, dz, 13)
[x1] _ by; b12] 3’1] (s) X ¢z cz
x b by, ] Ly
2 21 Pzlir2 from which the following set of equations are obéai:
can always be determined as one that satisfies;unimjuely, the d d d
following [6]: i _ % 4%
o @11 G121[by; b bir  bial(2 Atee ™ em ony
11 12 11 12| _ 11 12 &
[az1 azz] [bu bzz] B [bz1 bzz] [0 A]' © gllgi;;‘ Zl(‘vZZ)deZ1 )dz
12\Y1, 41,42 1
The similarity transformation used in the presentlg is given by _ +0913(v1, 21, 2,)d2,
N a2 204, y 911(v1,21,2,) (A + ge¥2"1)
[x;] = 1(_(1 +ay) —ay+ag,+e y;] 7 +912(v1, 21, 25)c2y
2 12 1T +913(v1, 21, 25) 7, 14)
The initial condition can be determined as dv, _ dz _ dz;
—aqq + [¢%¥) + € 2 A4 ;Zldv %2
- - - 21 2
il e, AR ® oy )i
ot e - + Z1,2,)dz
2eas, - . 1923( 1,22)d2,
21
which always exists under the present condition. +922(21,22)C24
+923(21,22)c2,

C. Diagonalization of Triangular Systems

In this subsection, the diagonalization is achieiredwo
steps; first to a diagonal system with fixed muéip
eigenvalues and second to one with arbitrary (uistior
multiple) eigenvalues.

In (14), 911, 912,and g3 are functions ofv,,z;, and z,,
g2 and g,; those ofz, and z,, and g,; a constant. These
must be determined such that the denominators @n th
right-most sides are zero and, at the same time, th
corresponding numerators are exact differentialhe T
necessary and sufficient conditions on the exastaes

Double Eigenvalues

Let the diagonal system be given by

[Z-l] _ [c 0] [21] [21(0)] _ [Zm] @ (6911(171'21'22) _ 0912(v1, 21, 27)
Al 0 cleO] B Sl rars)  Sgsslon )
. . " 912\V1,21,Z 913\V1, 73, Z,
wherez, and z, are the state variables with their initial cormlis 1 al Lo S 2
; - ; Z, 0z,

given byzandzy. In the above, the value of eigenvaliés not, 9914 Y gus( ) (15)
unfortunately, arbitrary and will be determined ilyo The 913\, 2, 22) 0911101 21, 22
transformation from systemd)(to (9) is to be achieved using the v 0z,
following transformation: 0922(21,72) _ 0923(21,22)

[}’1] _ [e”l(zpzz)] (10) 02, 0z

Y2l 7 |gva(z122) at which time the following hold:
where v;(z;,z,) and v,(z,z,) are functions of z; and z,. 911(V1,21, 22)dvy + g12(V1, 241, 2,)d 2,
Functionsv, (z1,2,) and v,(zy,2,) are to be determined explicitly +913(v1,21,2,)dz, = 0 16
in the rest of this subsection. To this end, défeiate (10), using (4), G210V + G2z (21, 2,)d 2, : (16)

to obtain +923 (Z1, Zz)de =0
[(; vy vy ]
vl | 192, T 0z y1| Ay, + €y ; ;
[.1] = ! 2 = [ ! 2] (11) Candidate functiongj,;, g2, and g,5 that have been chosen
Y2 , 0, v, Ay, t t the t i t the following:
g i)y, 0 meet the two requirements are the following:
1
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c
(921 = )
1
920 an
923 = —Z1 + B,

where is B an arbitrary parameter. In this case, the exdfgrdntial
is given by

c B
—zdvz + Py dz, + t B dz, = 0. (18)
This yields, upon integration,
Cc
—qv2+ In(k1F(21,2,)) = hy, 19
where F(z,,z,) is defined as
F(z1,23) = 71 + B2z, (20)
K, is the signum ofF (z,,z,), given as
(1 (F(z1,22) > 0)
= 1 (P 2) < 0 1)

and h, is a constant. Since this constant
condition, it should be chosen as

must satiséy ittitial

[
hy =In <K10F0(Z10r220)y20'1>- (22)
where Fy(z,, z5) is defined as
Fo (210, Z20) = 210 + BZ20 (23)
and k;, is the signum ofF;, (2, z50), given by
1 (Fo(210,220) > 0)
K19 = . 24
10 {_1 (Fo(z10,220) < 0) @9
Function v, can now be obtained as
1
oV = ( K F )Ey 25)
K10Fo 20

To determine the other functior:, in (10), substitute (25) into the
first equation of (14) to obtain
4
K F )c -
K10Fo ,

+912(v1, 21, Z2)c21 + g13(v1, 21, 22)C2Z,

which can be made equal to zero by choosing funstitor instance,
as

J11(1,21,2) | A + €y ( (26)

e’
g11 = Tz
2e"t 2ey,4
912 Z_F_FOZAF (27)
_ 2pe”r 2eyyf
913 =77 T RF
and choosing the eigenvalue of system (9) as
= A 28
c= > (28)

Substituting (27) into the first equation in (1&hd integrating
the resulting relation, one obtains
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(29)

v = F? <h1 +

where h; is a constant, which depends on initial conditi@ssin
(22), and should be chosen as

2ey,0ln(i F)
AF2 ’

Ay10 — 2&y50ln(ic1oFo)

hy = 30
The variable transformation (10) is given by
2
(F 2+ F 21 K F 7
Yo\ Y20 n
V1 _ Fo) (Fo) (KlgFg)
yz] = (31)

F 2
Y20 (F_o)
where F, is arbitrary, as will be shown shortly, and isuaeed to be
nonzero. Furthermore,x; and x,, can be removed from (31) as
follows. First, it should be noted that (31) iseerged to hold true for

any initial conditions onz; and z, and thus, they can be chosen
arbitrarily. Thus, let them be arbitrary parametizaoted by

Z10 = Y1, Z20 = V2- (32)
Second, functiorr does not change its sign, since its derivative can
be written as

o A
F=Z1+BZZZ—21+'BEZZZEF, (33)

2

which is a first-order system whose response isataoric. Therefore,
the sign of F depends solely on that @, and, thus,

K1 = Kio- (34)
The transformation between (4) and (9) is given by
2e
Y1] _ % <% *in (y1 fﬁyz) A) (35)
Y2 2 '

=77
Y20\ + 72

D. Distinct Eigenvalues

The given system (1), which has double eigenvalugas
converted into a triangular system (4) with the sasigenvalues
using a similarity transformation (7). System (4)asw then
transformed into a diagonal system (9) with doubtgenvalues but
their values were halved, using the method predent§4]. System
(9) is now to be related yet to another diagonatey whose
eigenvalues can now be set arbitrarily, double istirett. This is
possible since once the system is diagonalizedsytsiem is basically
a collection of first-order sub-systems, each oficiwhcan then be

modified to another sub-system with arbitrary eigdne
individually.
The final diagonal system is written as
Wl _ my 41 (0) W1()
[Wz] h [ 0 ] ] [WZ (0) Wzo]' (36)

where w; and w, are state variablesy;, and w,, their initial
values, andm; and m, are non-zero but otherwise arbitrary
eigenvalues. The transformation between systeman@)36) can be
achieved using the following:

Z1] _ [ep1(W1)

Zy - epz(Wz) ’ (37)

where p, (w;) and p,(w,) are functions of single variable, which
suffices for first-order sub-systems. These fumstjgp,(w;) and
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p2(w,), are derived below:

Differentiating (37) and using system (9) with te&laship (31) give

dpy an: A

dw,

W dp, arz | 4
2 dw, 2J 2

which can be re-arranged, using (36), into

(38)

-

2

dp,

mywy; —
am (39)

D2

myw, d_MIZ

N >N >

This leads to the following exact differential etioa:

dp: _ -
& miwq

dwy

dp; dw, (40)

=0
& myw;

which yields

2 _1

7P + Injwy| ™ =gy

5 1 (41)
7Pz + Infw,| ™2 = q,

with constantsq; and g,chosen as

(1 (2wl 7
In <V1}L|W1o| m1> =q1

< 2 L . (42)
Un <V22|W20|_m_2> =42
With these valuesp, and p, are determined as
A
pr=1In{yr < | )27"1
[wiol
1 (43)

|Wzo|

|W2| 2m,
kPz =lIn|v,

2¢e G
I[y (Ym i ]I
}’1] _ Y20 Y1 +[))V2 45)
V2 [ J
Y200, +ﬁyz)2
where
_A _A
— o (P W2 \2m,
Gomw) =y ()™ o (2] @e)

E. Diagonalization

The triangularization of system (1) to (4), thegtinalization with
multiple eigenvalues of system (4) to (9), and thdth arbitrary
eigenvalues of system (9) to (36) can be combimed & single
transformation. This can be obtained by substitu4b) into (7) so
that y;, and y, are eliminated and using the relationship (8) on
initial conditions. The resulting transformationoistained as

G
M
o) [ B PN o
Xl (1 + By2)? o — n(ai; — az,) G
20 2a;,2 v1+B72
whereG is given by (46) and
n = (a1 — az2)%10 + 2a12%30. (48)

It must be pointed out that in the diagonalization
conversions, the eigenvalue of the given syst&nmust be
assumed nonzero, while it can be zero in the ttikamzation
and multi-rate discretization that follows.

I1l.  MULTI-RATE DISCRETIZATION

Using the diagonal form (36) where the eigenvalaes
chosen to be identical, a multi-rate exact disetiete model
can be obtained easily, where there is no ordeease and
sampling rates are chosen arbitrarily. The exastrdte-time
model is a model whose response matches coincittethat
of the original continuous-time system at all sangpinstants
for any sampling period. When all state variablessampled
at the same rate, it reduces to the well-known texexdel [3].
The most primitive approach to the analysis of dtimnate
n-th order system, where each state is sampleds@nalive
rate, is to prepare an n-th order single-rate mddeleach

Since the states; and w, are of first-order sub-systems insampling rate and, thus, use the totalnok n numbers of

(36), their signs are the same as thosevgf and w,,, so
that the desired variable transformation is fin&dlynd as

w A
1 \2my
(Wlo)

wa Zmz
& (Wzo)

It should be noted that the initial conditions,, and w,,,
must be non-zero but otherwise can be chosen anbjtfor
any givenz;q andz,.

By combining (35) and (44), using (20), the transfation
that relates directly the triangular system (4)he diagonal
system (36), can be determined as

1=

(44)
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state variables. In contrast, in system (36), tberevalues and
initial stats are chosen to be identical as

mp=mp; =m, W10 = W2 = Wy, (49)
so that the states become identical as
Wy =w, =w. (50)
Thus, the diagonal system is practically a firstesrsystem as
W = mw. (51)

The exact discrete-time models of this linear sysgampled
with the periods ofT; and T,, which are then collected as
diagonal elements, yield the following exact sedeation:

emT1 -1

Y o |

L]

emT2 — 1] Wak, I’
T, |

(52)
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where w;, implies w;(k;, T;) = w;(t)|¢=x,r, and

qr, —1
6Ti = T ’ qTiWiki = Wi,ki+l' (53)
L

model, where its sampling rates can be chosenranibjtand
its order does not increase.Triangular systems lsethe
present study can be replaced with Jordan blocksatso be
extended to cover the distinct eigenvalue portiofisthe

The statesw,,, which are updated element-wise using (52) aystem. Combining these two cases, a general igehealue

different rates, can be substituted into the folfaywnonlinear output
equation to recover the original states elemenewis
[ (Wl,k

: )]
1 1k, \2m
X10 + nin ( - 1) >
g | O e
X2,k ] A 1.\
2 l(Wz,kZ)m <x 3 n(ay; — azy) In (wz'kz)m>
Wo 20 2a;, Wo

It should be noted that parametgsy,, andy, in (47)
have disappeared in (54). The exact multi-rate misdgiven

(54)

case may be covered. The technique should be furthe

extended to systems with complex-conjugate eigeiegalThe
linearization of nonlinear systems into a diagasatem may
then be possible based on [8].Another highly imgaravenue
to pursue is to apply the developed multi-rate eramdel for
the development of multi-rate digital controller s

methods. An example is an extension of a single-digital

redesign method, which can guarantee closed-laylisy for

any sampling periods [10], to the multi-rate vensio

as a set of linear state equation (52) with a neali output
equation (54). 1 —xl
08 --x1 k1| |
IV. SIMULATIONS 0.6 ]
The system used for the simulation is the secoddror 04 8
system given in the following state space form: 0.2 .
4l -1 11™ Uy ‘ ‘ ‘ ‘
[xz] =20 Skl (35) 0 1 2 3 4 5
. . . o Time
whose eigenvalues are identical at=—2. lts initial Fig. 1 State response, and its exact modet, ,; for T; = 0.3
conditions are chosen arbitrarily ag, =1 and x,, = 2. seconds
The exact discrete-time model (52) is chosen toehthe
eigenvalue ofm = —1 and sampled using the period of 9
T, =03 and T,=0.5 seconds. The resulting exact :Xg o
discrete-time model is obtained as the followingeér state L.57 XeRel
equation with the non-linear output equation: 1t il
0.5 ]
50 3Wk, [ 0 } [Wkl] S
50 5sWy, — 1| Wk, o N -
05 0 1 2 3 4 5
- [—0.8639 ” ] (56) . Tie
= —0.7869/ lwi, Fig. 2 State response, and its exact modet,, for T, = 0.5
and seconds
2
[xl,kl] _ [(wi,)" (= 3lnw ) 57 REFERENCES
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continuous-time system in solid lines. The sequemteained by the
exact discrete-time model are held constant usiagero-order-hold
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V. CONCLUSIONS

By applying an exact linearization technique pragubs a
previous study [8], the diagonalization of systemvith
multiple-eigenvalues via a nonlinear variable tfarmation
has been made possible. Such diagonalization iposggible
using the standard similarity transformation, whiclased on
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