Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues

Authors: Ayşe Dilek Maden

Abstract:

For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.

Keywords: Degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096731

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205

References:


[1] D. Banchev, A.T. Balaban, X. Liu, D.J. Klein, “Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances”, Int. J. Quantum Chem., vol. 50, pp. 2978-2981, 1994.
[2] M. Bianchi, A. Cornaro, J.L. Palacios, A. Torriero, “Bounding the sum of powers of normalized Laplacian eigenvalues of graphs through majorization methods”, MATCH Commun. Math. Comput. Chem., vol. 70, pp. 707-716, 2013.
[3] P. Biler, A. Witkowski, Problems in Mathematical Analysis, New York, 1990.
[4] B. Bollobas, P. Erdös, “Graphs of extremal weights”, ArsCombin., vol. 50, pp. 225-233, 1998.
[5] S.B. Bozkurt, D. Bozkurt, “On the sum of powers of normalized Laplacian eigenvalues of graphs”, MATCH Commun. Math. Comput. Chem., vol. 68, pp. 917-930, 2012.
[6] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, California, 1990.
[7] H. Chen, F. Zhang, “Resistance distance and the normalized Laplacian Spectrum”, Discrete App. Math., vol. 155, pp. 654-661, 2007.
[8] F.R.K. Chung, Spectral Graph Theory, CBMS Lecture Notes, Providence, 1997.
[9] M. Covers, S. Fallat, S. Kirkland, “On the normalized Laplacian energy and the general Randic index of graphs”, Lin. Algebra Appl., vol. 433, pp. 172-190, 2010.
[10] D. Cvetkovi´c, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
[11] K.Ch. Das, A.D. Maden (Güngör), S.B. Bozkurt, “On the normalized Laplacian eigenvalues of graphs”, ArsCombin., to be published.
[12] L. Feng, I. Gutman, G. Yu, “Degree Kirchhoff index of unicyclic graphs”, MATCH Commun. Math. Comput. Chem., vol. 69, no.3, pp. 629-643, 2013.
[13] M. Fiedler, “Algebraic connectivity of graphs”, Czech. Math. J., vol. 23, pp. 298-305, 1973.
[14] S. Furuichi, “On refined Young inequalities and reverse inequalities”, vol. 5, no. 1, pp. 21-31, 2011.
[15] I. Gutman, B. Mohar, “The quasi-Wiener and the Kirchhoff indices Coincide”, J. Chem. Inf. Comput. Sci., vol. 36, pp. 982-985, 1996.
[16] D.J. Klein, M. Randic, “Resistance distance. Applied graph theory anddiscrete mathematics in chemistry (Saskatoon, SK, 1991)”, J. Math. Chem., vol. 12, no. 1-4, pp. 81-95, 1993.
[17] D.J. Klein, “Graph geometry, graph metries& Wiener Fifty years of theWiener index”, MATCH Commun. Math. Comput. Chem. , vol. 35, pp. 7-27, 1997.
[18] R. Merris, “Laplacian matrices of graphs. A Survey”, Lin. Algebra Appl.vol. 197, pp. 143-176, 1994.
[19] J. Palacios, J.M. Renom,” Another look at the degree Kirchhoff index”,Int. J. Quantum Chem., vol. 111, pp. 3453-3455, 2011.
[20] S. Rosset, “Normalized symmetric functions”,Newton’s inequalities and anew set of stronger inequalities, vol. 96, no. 9, pp. 815-819, 1989.
[21] W. Xiao, I. Gutman, “On resistance matrices”, MATCH Commun. Math.Comput. Chem. , vol.49, pp. 67-81, 2003.
[22] W. Xiao, I. Gutman, “Resistance distance and Laplacian spectrum”, Theor. Chem. ACC. , vol. 110, pp. 284-289, 2003.
[23] Y.J. Yang, X.Y. Jiang,“Unicyclic graphs with extremal Kirchhoff index”, MATCH Commun. Math. Comput. Chem., vol. 60, pp. 107-120, 2008.
[24] G. Yu, L. Feng, “Randi´c index and eigenvalues of graphs”, Rocky Mount. J. Math, vol. 40, pp. 713-721, 2010.
[25] W. Zhang, H. Deng, “The second maximal and minimal Kirchhoff indices of unicyclic graphs”, MATCH Commun. Math. Comput. Chem., vol. 61, pp. 683-695, 2009.
[26] B. Zhou, N. Trinajisti´c,“A note on Kirchhoff index”, Chem. Phys. Lett., vol. 455, pp. 120-123, 2008.
[27] B. Zhou,“On sum of powers of the Laplacian eigenvalues of graphs”, Lin. Algebra Appl., vol. 429, pp. 2239-2246, 2008.
[28] B. Zhou, N. Trinajistic,“The Kirchhoff index and the matching number”, Int. J. Quantum Chem., vol. 109, pp. 2978-2981, 2009.
[29] B. Zhou, N. Trinajisti´c, “On resistance distance and Kirchhoff index”, J. Math. Chem., vol. 46, pp. 283-289, 2009.
[30] P. Zumstein, Comparison of spectral methods through the adjacency matrix and the Laplacian of a graph, Diploma Thesis, ETH Zürich, 2005.