Search results for: Defect Removal efficiency.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2947

Search results for: Defect Removal efficiency.

2887 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: Bubble column reactor, CO2 capture, Response Surface Methodology, water desalination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
2886 Gel-Based Autologous Chondrocyte Implantation (GACI) in the Knee: Multicentric Short Term Study

Authors: Shaival Dalal, Nilesh Shah, Dinshaw Pardiwala, David Rajan, Satyen Sanghavi, Charul Bhanji

Abstract:

Autologous Chondrocyte Implantation (ACI) is used worldwide since 1998 to treat cartilage defect. GEL based ACI is a new tissue-engineering technique to treat full thickness cartilage defect with fibrin and thrombin as scaffold for chondrocytes. Purpose of this study is to see safety and efficacy of gel based ACI for knee cartilage defect in multiple centres with different surgeons. Gel-based Autologous Chondrocyte Implantation (GACI) has shown effectiveness in treating isolated cartilage defect of knee joint. Long term results are still needed to be studied. This study was followed-up up to two years and showed benefit to patients. All enrolled patients with a mean age of 28.5 years had an average defect size of3 square centimeters, and were grade IV as per ICRS grading. All patients were followed up several times and at several intervals at 6th week, 8th week, 11th week, 17th week, 29th week, 57th week after surgery. The outcomes were measured based on the IKDC (subjective and objective) and MOCART scores.

Keywords: Knee, chondrocyte, autologous chondrocyte implantation, gel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
2885 Weld Defect Detection in Industrial Radiography Based Digital Image Processing

Authors: N. Nacereddine, M. Zelmat, S. S. Belaïfa, M. Tridi

Abstract:

Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.

Keywords: Digital image processing, global and localapproaches, radiographic film, weld defect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4008
2884 Electric Field Investigation in MV PILC Cables with Void Defect

Authors: Mohamed A. Alsharif, Peter A. Wallace, Donald M. Hepburn, Chengke Zhou

Abstract:

Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect.

Keywords: MV PILC cables, Finite Element Method /COMSOL Multiphysics, Electric Field Stress, Partial Discharge Degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3524
2883 Efficient CNC Milling by Adjusting Material Removal Rate

Authors: Majid Tolouei-Rad

Abstract:

This paper describes a combined mathematicalgraphical approach for optimum tool path planning in order to improve machining efficiency. A methodology has been used that stabilizes machining operations by adjusting material removal rate in pocket milling operations while keeping cutting forces within limits. This increases the life of cutting tool and reduces the risk of tool breakage, machining vibration, and chatter. Case studies reveal the fact that application of this approach could result in a slight increase of machining time, however, a considerable reduction of tooling cost, machining vibration, noise and chatter can be achieved in addition to producing a better surface finish.

Keywords: CNC machines, milling, optimization, removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3437
2882 Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

Authors: P. Lestinsky, D. Jecha, V. Brummer, P. Stehlik

Abstract:

Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150°C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150°C to 40°C. The pressure drop was increased with increasing of a liquid-gas ratio, but no too much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant.

Keywords: Desulphurization, absorption, flue gas, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850
2881 Synthesis of Silk Fibroin Fiber for Indoor air Particulate Removal

Authors: Janjira Triped, Wipada Sanongraj, Bovornlak Oonkhanond, Sompop Sanongraj

Abstract:

The main objective of this research is to synthesize silk fibroin fiber for indoor air particulate removal. Silk cocoons were de-gummed using 0.5 wt % Na2CO3 alkaline solutions at 90 Ó╣ìC for 60 mins, washed with distilled water, and dried at 80 Ó╣ìC for 3 hrs in a vacuum oven. Two sets of experiment were conducted to investigate the impacts of initial particulate matter (PM) concentration and that of air flow rate on the removal efficiency. Rice bran collected from a local rice mill in Ubonratchathani province was used as indoor air contaminant in this work. The morphology and physical properties of silk fibroin (SF) fiber were measured. The SEM revealed the deposition of PM on the used fiber. The PM removal efficiencies of 72.29 ± 3.03 % and 39.33 ± 1.99 % were obtained of PM10 and PM2.5, respectively, when using the initial PM concentration at 0.040 mg/m3 and 0.020 mg/m3 of PM10 and PM2.5, respectively, with the air flow rate of 5 L/min.

Keywords: Indoor air, Particulate matter, Scanning electron microscope (SEM), Silk fibroin fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
2880 Isolation and Probiotic Characterization of Arsenic-Resistant Lactic Acid Bacteria for Uptaking Arsenic

Authors: Jatindra N. Bhakta, Kouhei Ohnishi, Yukihiro Munekage, Kozo Iwasaki

Abstract:

The growing health hazardous impact of arsenic (As) contamination in environment is the impetus of the present investigation. Application of lactic acid bacteria (LAB) for the removal of toxic and heavy metals from water has been reported. This study was performed in order to isolate and characterize the Asresistant LAB from mud and sludge samples for using as efficient As uptaking probiotic. Isolation of As-resistant LAB colonies was performed by spread plate technique using bromocresol purple impregnated-MRS (BP-MRS) agar media provided with As @ 50 μg/ml. Isolated LAB were employed for probiotic characterization process, acid and bile tolerance, lactic acid production, antibacterial activity and antibiotic tolerance assays. After As-resistant and removal characterizations, the LAB were identified using 16S rDNA sequencing. A total of 103 isolates were identified as As-resistant strains of LAB. The survival of 6 strains (As99-1, As100-2, As101-3, As102-4, As105-7, and As112-9) was found after passing through the sequential probiotic characterizations. Resistant pattern pronounced hollow zones at As concentration >2000 μg/ml in As99-1, As100-2, and As101-3 LAB strains, whereas it was found at ~1000 μg/ml in rest 3 strains. Among 6 strains, the As uptake efficiency of As102-4 (0.006 μg/h/mg wet weight of cell) was higher (17 – 209%) compared to remaining LAB. 16S rDNA sequencing data of 3 (As99- 1, As100-2, and As101-3) and 3 (As102-4, As105-7, and As112-9) LAB strains clearly showed 97 to 99% (340 bp) homology to Pediococcus dextrinicus and Pediococcus acidilactici, respectively. Though, there was no correlation between the metal resistant and removal efficiency of LAB examined but identified elevated As removing LAB would probably be a potential As uptaking probiotic agent. Since present experiment concerned with only As removal from pure water, As removal and removal mechanism in natural condition of intestinal milieu should be assessed in future studies.

Keywords: Lactic acid bacteria, As-resistant, characterization, Pediococcus sp., As removal probiotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
2879 Removal of Heavy Metals from Wastewater by Adsorption and Membrane Processes: a Comparative Study

Authors: Nermen N. Maximous, George F. Nakhla, W. K. Wan

Abstract:

This research aimed at investigating the Cr (III), Cd (II) and Pb (II) removal efficiencies by using the newly synthesized metal oxides/ polyethersulfone (PES), Al2O3/PES and ZrO2/PES, membranes from synthetic wastewater and exploring fouling mechanisms. A Comparative study between the removal efficiencies of Cr (III), Cd (II) and Pb (II) from synthetic and natural wastewater by using adsorption onto agricultural by products and the newly synthesized Al2O3/PES and ZrO2/PES membranes was conducted to assess the advantages and limitations of using the metal oxides/PES membranes for heavy metals removal. The results showed that about 99 % and 88 % removal efficiencies were achieved by the tested membranes for Pb (II) and Cr (III), respectively.

Keywords: Adsorption, metals removal, ultrafiltrationmembranes, wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5631
2878 Wastewater Treatment in Moving-Bed Biofilm Reactor operated by Flow Reversal Intermittent Aeration System

Authors: B. K. Kim, D. Chang, D. J. Son, D. W. Kim, J. K. Choi, H. J. Yeon, C. Y. Yoon, Y. Fan, S. Y. Lim, K. H. Hong

Abstract:

Intermittent aeration process can be easily applied on the existing activated sludge system and is highly reliable against the loading changes. It can be operated in a relatively simple way as well. Since the moving-bed biofilm reactor method processes pollutants by attaching and securing the microorganisms on the media, the process efficiency can be higher compared to the suspended growth biological treatment process, and can reduce the return of sludge. In this study, the existing intermittent aeration process with alternating flow being applied on the oxidation ditch is applied on the continuous flow stirred tank reactor with advantages from both processes, and we would like to develop the process to significantly reduce the return of sludge in the clarifier and to secure the reliable quality of treated water by adding the moving media. Corresponding process has the appropriate form as an infrastructure based on u- environment in future u- City and is expected to accelerate the implementation of u-Eco city in conjunction with city based services. The system being conducted in a laboratory scale has been operated in HRT 8hours except for the final clarifier and showed the removal efficiency of 97.7 %, 73.1 % and 9.4 % in organic matters, TN and TP, respectively with operating range of 4hour cycle on system SRT 10days. After adding the media, the removal efficiency of phosphorus showed a similar level compared to that before the addition, but the removal efficiency of nitrogen was improved by 7~10 %. In addition, the solids which were maintained in MLSS 1200~1400 at 25 % of media packing were attached all onto the media, which produced no sludge entering the clarifier. Therefore, the return of sludge is not needed any longer.

Keywords: Municipal wastewater treatment, Biological nutrient removal, Alternating flow intermittent aeration system, Reversal flow intermittent aeration system, Moving-bed biofilm reactor, CFSTR, u-City, u-Eco city

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
2877 Understanding Integrated Removal of Heavy Metals, Organic Matter and Nitrogen in a Constructed Wetland System Receiving Simulated Landfill Leachate

Authors: A. Mohammed, A. Babatunde

Abstract:

This study investigated the integrated removal of heavy metals, organic matter and nitrogen from landfill leachate using a novel laboratory scale constructed wetland system. The main objectives of this study were: (i) to assess the overall effectiveness of the constructed wetland system for treating landfill leachate; (ii) to examine the interactions and impact of key leachate constituents (heavy metals, organic matter and nitrogen) on the overall removal dynamics and efficiency. The constructed wetland system consisted of four stages operated in tidal flow and anoxic conditions. Results obtained from 215 days of operation have demonstrated extraordinary heavy metals removal up to 100%. Analysis of the physico- chemical data reveal that the controlling factors for metals removal were the anoxic condition and the use of the novel media (dewatered ferric sludge which is a by-product of drinking water treatment process) as the main substrate in the constructed wetland system. Results show that the use of the ferric sludge enhanced heavy metals removal and brought more flexibility to simultaneous nitrification and denitrification which occurs within the microbial flocs. Furthermore, COD and NH4-N were effectively removed in the system and this coincided with enhanced aeration in the 2nd and 3rd stages of the constructed wetland system. Overall, the results demonstrated that the ferric dewatered sludge constructed wetland system would be an effective solution for integrated removal of pollutants from landfill leachates.

Keywords: Constructed wetlands, ferric dewatered sludge, heavy metal, landfill leachate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
2876 Mathematical Modelling of Venturi Scrubber for Ammonia Absorption

Authors: S.Mousavian, D.Ashouri, M.abdolahi, M.H.Vakili, Y.Rahnama

Abstract:

In this study, the dispersed model is used to predict gas phase concentration, liquid drop concentration. The venturi scrubber efficiency is calculated by gas phase concentration. The modified model has been validated with available experimental data of Johnstone, Field and Tasler for a range of throat gas velocities, liquid to gas ratios and particle diameters and is used to study the effect of some design parameters on collection efficiency.

Keywords: Ammonia, Modelling, Purge gas, Removal efficiency, Venturi scrubber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
2875 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer

Authors: K. V. Kalinichenko, G. N. Nikovskaya

Abstract:

The efficiency of heavy metals removal from sewage  sludge in bioleaching processes with heterotrophic, chemoautotrophic  (sulphur-oxidizing) sludge cenoses and chemical leaching (in  distilled water, weakly acidic or alkaline medium) was compared.  The efficacy of heavy metals removal from sewage sludge varies  from 83 % (Zn) up to 14 % (Cr) and follows the order: Zn > Mn > Cu  > Ni > Co > Pb > Cr. The advantages of metals bioleaching process  at heterotrophic metabolism were shown. A new process for  bioconversation of sewage sludge into fertilizer at middle  temperatures after partial heavy metals removal was developed. This  process is based on enhancing vital ability of heterotrophic  microorganisms by adding easily metabolized nutrients and synthesis  of metabolites by growing sludge cenoses. These metabolites possess  the properties of heavy metals extractants and flocculants which  provide the enhancement of sludge flocks sedimentation. The process  results in biomineral fertilizer of prolonged action with immobilized  sludge bioelements. The fertilizer satisfies the EU limits for the  sewage sludge of agricultural utilization. High efficiency of the  biomineral fertilizer obtained has been demonstrated in vegetation  experiments.

 

Keywords: Fertilizer, heavy metals, leaching, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
2874 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.

Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
2873 Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products

Authors: Jean-Jacques Randrianarimanana, Nassim Sebaibi, Mohamed Boutouil

Abstract:

In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.

Keywords: Hydraulic, pervious concrete, pollutant removal efficiency, seashell by-products, stormwater runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899
2872 Radiation Damage as Nonlinear Evolution of Complex System

Authors: Pavlo Selyshchev

Abstract:

Irradiated material is a typical example of a complex system with nonlinear coupling between its elements. During irradiation the radiation damage is developed and this development has bifurcations and qualitatively different kinds of behavior. The accumulation of primary defects in irradiated crystals is considered in frame work of nonlinear evolution of complex system. The thermo-concentration nonlinear feedback is carried out as a mechanism of self-oscillation development. It is shown that there are two ways of the defect density evolution under stationary irradiation. The first is the accumulation of defects; defect density monotonically grows and tends to its stationary state for some system parameters. Another way that takes place for opportune parameters is the development of self-oscillations of the defect density. The stationary state, its stability and type are found. The bifurcation values of parameters (environment temperature, defect generation rate, etc.) are obtained. The frequency of the selfoscillation and the conditions of their development is found and rated. It is shown that defect density, heat fluxes and temperature during self-oscillations can reach much higher values than the expected steady-state values. It can lead to a change of typical operation and an accident, e.g. for nuclear equipment.

Keywords: Irradiation, Primary Defects, Solids, Self-oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
2871 Functionalized Nanoparticles as Sorbents for Removal of Toxic Species

Authors: Jerina Majeed, Jayshree Ramkumar, S. Chandramouleeswaran, A. K. Tyagi

Abstract:

Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity.

Keywords: Mercury, lead, thiol functionalization, ZnO NPs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
2870 Contour Estimation in Synthetic and Real Weld Defect Images based on Maximum Likelihood

Authors: M. Tridi, N. Nacereddine, N. Oucief

Abstract:

This paper describes a novel method for automatic estimation of the contours of weld defect in radiography images. Generally, the contour detection is the first operation which we apply in the visual recognition system. Our approach can be described as a region based maximum likelihood formulation of parametric deformable contours. This formulation provides robustness against the poor image quality, and allows simultaneous estimation of the contour parameters together with other parameters of the model. Implementation is performed by a deterministic iterative algorithm with minimal user intervention. Results testify for the very good performance of the approach especially in synthetic weld defect images.

Keywords: Contour, gaussian, likelihood, rayleigh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
2869 A Study of Removing SUVA and Trihalomethanes by Biological Activated Carbon

Authors: Tseng, Wei-Bin., Lou, Jie-Chung, Han, Jia-Yun

Abstract:

SUVA (equivalent to UV254/DOC) value in raw water is a precursor for the formation of trihalomethane during chlorination at a water treatment plant. This study collected rapidly filtered water from an advanced water treatment plant for use in experiments on raw water. The removal rate of treating the trihalomethanes formation potential (THMFP) was conducted by using a biological activated carbon. The hydraulic retention time and SUVA loading were major factors in biological degradation tests. The results showed that biological powder-activated carbon (BPAC) lowered the average concentration of UV254 and value of SUVA in raw water. A removal efficiency of THMFP was present in the treatment of the three primary organic carbon items. These results highlighted the importance of the BPAC had an excellent treatment efficiency on THMFP.

Keywords: Water treatment, BPAC, THMFP, SUVA, correlation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
2868 Arsenate Removal by Nano Zero-valent Iron in the Gas Bubbling System

Authors: V. Tanboonchuy, J.C. Hsu, N. Grisdanurak, C.H. Liao

Abstract:

This study focused on arsenate removal by nano zero-valent iron (NZVI) in the gas-bubbled aqueous solution. It appears that solution acidified by H2SO4 is far more favorable than by CO2-bubbled acidification. In addition, as dissolved oxygen was stripped out of solution by N2 gas bubbling, the arsenate removal dropped significantly. To take advantages of common practice of carbonation and oxic condition, pretreatment of CO2 and air bubbling in sequence are recommended for a better removal of arsenate.

Keywords: Arsenic, arsenate, zero-valent iron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
2867 A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train

Authors: N. A. Ahmad Zubairi, H. Takaijudin, K. W. Yusof

Abstract:

Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants' growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive.

Keywords: Pesticides, heavy metal, agricultural runoff, bioretention, mechanism removal, treatment train.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
2866 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium

Authors: Kartikaningsih Danis, Yao-Hui Huang

Abstract:

Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.

Keywords: Electrocoagulation, chemical coagulation, aluminum electrode, boron removal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
2865 Evaluation of Cigarette Filters Rods as a Biofilm Carrier in Integrated Fixed Film Activated Sludge Process

Authors: A. Sabzali, M. Nikaeen, B. Bina

Abstract:

The purpose of the experiments described in this article was the comparison of integrated fixed film activated sludge (IFAS) and activated sludge (AS) system. The IFAS applied system consists of the cigarette filter rods (wasted filter in tobacco factories) as a biofilm carrier. The comparison with activated sludge was performed by two parallel treatment lines. Organic substance, ammonia and TP removal was investigated over four month period. Synthetic wastewater was prepared with ordinary tap water and glucose as the main sources of carbon and energy, plus balanced macro and micro nutrients. COD removal percentages of 94.55%, and 81.62% were achieved for IFAS and activated sludge system, respectively. Also, ammonia concentration significantly decreased by increasing the HRT in both systems. The average ammonia removal of 97.40 % and 96.34% were achieved for IFAS and activated sludge system, respectively. The removal efficiency of total phosphorus (TP-P) was 60.64%, higher than AS process by 56.63% respectively.

Keywords: Wastewater, biofilm carrier, cigarette filters rods, Activated Sludge, IFAS, nitrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
2864 NiO-CeO2 Nano-Catalyst for the Removal of Priority Organic Pollutants from Wastewater through Catalytic Wet Air Oxidation at Mild Conditions

Authors: Anushree, Chhaya Sharma, Satish Kumar

Abstract:

Catalytic wet air oxidation (CWAO) is normally carried out at elevated temperature and pressure. This work investigates the potential of NiO-CeO2 nano-catalyst in CWAO of paper industry wastewater under milder operating conditions of 90 °C and 1 atm. The NiO-CeO2 nano-catalysts were synthesized by a simple co-precipitation method and characterized by X-ray diffraction (XRD), before and after use, in order to study any crystallographic change during experiment. The extent of metal-leaching from the catalyst was determined using the inductively coupled plasma optical emission spectrometry (ICP-OES). The catalytic activity of nano-catalysts was studied in terms of total organic carbon (TOC), adsorbable organic halides (AOX) and chlorophenolics (CHPs) removal. Interestingly, mixed oxide catalysts exhibited higher activity than the corresponding single-metal oxides. The maximum removal efficiency was achieved with Ce40Ni60 catalyst. The results indicate that the CWAO process is efficient in removing the priority organic pollutants from wastewater, as it exhibited up to 59% TOC, 55% AOX, and 54 % CHPs removal.

Keywords: Nano-materials, NiO-CeO2, wastewater, wet air oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
2863 Use of Agricultural Waste for the Removal of Nickel Ions from Aqueous Solutions: Equilibrium and Kinetics Studies

Authors: Manjeet Bansal, Diwan Singh, V.K.Garg, Pawan Rose

Abstract:

The potential of economically cheaper cellulose containing natural materials like rice husk was assessed for nickel adsorption from aqueous solutions. The effects of pH, contact time, sorbent dose, initial metal ion concentration and temperature on the uptake of nickel were studied in batch process. The removal of nickel was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. The sorption data has been correlated with Langmuir, Freundlich and Dubinin-Radush kevich (D-R) adsorption models. It was found that Freundlich and Langmuir isotherms fitted well to the data. Maximum nickel removal was observed at pH 6.0. The efficiency of rice husk for nickel removal was 51.8% for dilute solutions at 20 g L-1 adsorbent dose. FTIR, SEM and EDAX were recorded before and after adsorption to explore the number and position of the functional groups available for nickel binding on to the studied adsorbent and changes in surface morphology and elemental constitution of the adsorbent. Pseudo-second order model explains the nickel kinetics more effectively. Reusability of the adsorbent was examined by desorption in which HCl eluted 78.93% nickel. The results revealed that nickel is considerably adsorbed on rice husk and it could be and economic method for the removal of nickel from aqueous solutions.

Keywords: Adsorption, nickel, SEM, EDAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630
2862 Treatment of Acid Mine Drainage Using Un- Activated Bentonite and Limestone

Authors: Thembelihle Nkonyane, Freeman Ntuli, Edison Muzenda

Abstract:

The use of un-activated bentonite, and un-activated bentonite blended with limestone for the treatment of acid mine drainage (AMD) was investigated. Batch experiments were conducted in a 5 L PVC reactor. Un-activated bentonite on its own did not effectively neutralize and remove heavy metals from AMD. The final pH obtained was below 4 and the metal removal efficiency was below 50% for all the metals when bentonite solid loadings of 1, 5 and 10% were used. With un-activated bentonite (1%) blended with 1% limestone, the final pH obtained was approximately 7 and metal removal efficiencies were greater than 60% for most of the metals. The Langmuir isotherm gave the best fit for the experimental data giving correlation coefficient (R2) very close to 1. Thus, it was concluded that un-activated bentonite blended with limestone is suitable for potential applications in removing heavy metals and neutralizing AMD.

Keywords: acid mine drainage, bentonite, limestone, heavy metal removal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
2861 Decolourization of Melanoidin Containing Wastewater Using South African Coal Fly Ash

Authors: V.O. Ojijo, M.S. Onyango, Aoyi Ochieng, F.A.O. Otieno

Abstract:

Batch adsorption of recalcitrant melanoidin using the abundantly available coal fly ash was carried out. It had low specific surface area (SBET) of 1.7287 m2/g and pore volume of 0.002245 cm3/g while qualitative evaluation of the predominant phases in it was done by XRD analysis. Colour removal efficiency was found to be dependent on various factors studied. Maximum colour removal was achieved around pH 6, whereas increasing sorbent mass from 10g/L to 200 g/L enhanced colour reduction from 25% to 86% at 298 K. Spontaneity of the process was suggested by negative Gibbs free energy while positive values for enthalpy change showed endothermic nature of the process. Non-linear optimization of error functions resulted in Freundlich and Redlich-Peterson isotherms describing sorption equilibrium data best. The coal fly ash had maximum sorption capacity of 53 mg/g and could thus be used as a low cost adsorbent in melanoidin removal.

Keywords: Adsorption, Isotherms, Melanoidin, South African coal fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470
2860 Torque Based Selection of ANN for Fault Diagnosis of Wound Rotor Asynchronous Motor-Converter Association

Authors: Djalal Eddine Khodja, Boukhemis Chetate

Abstract:

In this paper, an automatic system of diagnosis was developed to detect and locate in real time the defects of the wound rotor asynchronous machine associated to electronic converter. For this purpose, we have treated the signals of the measured parameters (current and speed) to use them firstly, as indicating variables of the machine defects under study and, secondly, as inputs to the Artificial Neuron Network (ANN) for their classification in order to detect the defect type in progress. Once a defect is detected, the interpretation system of information will give the type of the defect and its place of appearance.

Keywords: Artificial Neuron Networks (ANN), Effective Value (RMS), Experimental results, Failure detection Indicating values, Motor-converter unit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
2859 Effect of Non-Metallic Inclusion from the Continuous Casting Process on the Multi-Stage Forging Process and the Tensile Strength of the Bolt: A Case Study

Authors: Tomasz Dubiel, Tadeusz Balawender, Mirosław Osetek

Abstract:

The paper presents the influence of non-metallic inclusions on the multi-stage forging process and the mechanical properties of the dodecagon socket bolt used in the automotive industry. The detected metallurgical defect was so large that it directly influenced the mechanical properties of the bolt and resulted in failure to meet the requirements of the mechanical property class. In order to assess the defect, an X-ray examination and metallographic examination of the defective bolt were performed, showing exogenous non-metallic inclusion. The size of the defect on the cross section was 0.531 mm in width and 1.523 mm in length; the defect was continuous along the entire axis of the bolt. In analysis, a finite element method (FEM) simulation of the multi-stage forging process was designed, taking into account a non-metallic inclusion parallel to the sample axis, reflecting the studied case. The process of defect propagation due to material upset in the head area was analyzed. The final forging stage in shaping the dodecagonal socket and filling the flange area was particularly studied. The effect of the defect was observed to significantly reduce the effective cross-section as a result of the expansion of the defect perpendicular to the axis of the bolt. The mechanical properties of products with and without the defect were analyzed. In the first step, the hardness test confirmed that the required value for the mechanical class 8.8 of both bolt types was obtained. In the second step, the bolts were subjected to a static tensile test. The bolts without the defect gave a positive result, while all 10 bolts with the defect gave a negative result, achieving a tensile strength below the requirements. Tensile strength tests were confirmed by metallographic tests and FEM simulation with perpendicular inclusion spread in the area of the head. The bolts were damaged directly under the bolt head, which is inconsistent with the requirements of ISO 898-1. It has been shown that non-metallic inclusions with orientation in accordance with the axis of the bolt can directly cause loss of functionality and these defects should be detected even before assembling in the machine element.

Keywords: continuous casting, multi-stage forging, non-metallic inclusion, upset bolt head

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
2858 New Corneal Reflection Removal Method Used In Iris Recognition System

Authors: Walid Aydi, Nouri Masmoudi, Lotfi Kamoun

Abstract:

Images of human iris contain specular highlights due to the reflective properties of the cornea. This corneal reflection causes many errors not only in iris and pupil center estimation but also to locate iris and pupil boundaries especially for methods that use active contour. Each iris recognition system has four steps: Segmentation, Normalization, Encoding and Matching. In order to address the corneal reflection, a novel reflection removal method is proposed in this paper. Comparative experiments of two existing methods for reflection removal method are evaluated on CASIA iris image databases V3. The experimental results reveal that the proposed algorithm provides higher performance in reflection removal.

Keywords: iris, pupil, specular highlights, reflection removal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160