Torque Based Selection of ANN for Fault Diagnosis of Wound Rotor Asynchronous Motor-Converter Association
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Torque Based Selection of ANN for Fault Diagnosis of Wound Rotor Asynchronous Motor-Converter Association

Authors: Djalal Eddine Khodja, Boukhemis Chetate

Abstract:

In this paper, an automatic system of diagnosis was developed to detect and locate in real time the defects of the wound rotor asynchronous machine associated to electronic converter. For this purpose, we have treated the signals of the measured parameters (current and speed) to use them firstly, as indicating variables of the machine defects under study and, secondly, as inputs to the Artificial Neuron Network (ANN) for their classification in order to detect the defect type in progress. Once a defect is detected, the interpretation system of information will give the type of the defect and its place of appearance.

Keywords: Artificial Neuron Networks (ANN), Effective Value (RMS), Experimental results, Failure detection Indicating values, Motor-converter unit.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1085882

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499

References:


[1] F.Felippitti, G.francescini,C.Tassoni, S.zond, P.vas ; «AI Techniques in induction machines diagnosis including the speed ripple Effect », IEEE Transaction on industries applications, vol.34, n┬░1,junnuary /February 1998.PP.98-108.
[2] S.Nandi, H.A.Tolyat, « Condition monitoring and fault diagnosis of electrical machines : A review », Industry applications conference, thirty-fourth IAS annual meeting conference record of the 1999 IEEE,vol.1 ,PP.197-202.
[3] G.Rostaing, « Diagnostic de défauts dans les entra├«nements électriques», Thèse de Doctorat, laboratoire d-électrotechnique de Grenoble, 1997/ sous la Direction de J.C.Trigeassou.
[4] A.Murry, J.Penman, «Extracting usefull higher order features for condition monitoring using artificial neural network», IEEE transaction on signal processing, Vol, 45, N┬░11, November 1997, PP. 2821-2828.
[5] A.R.Sadeghian, Z.Ye, B.Wu, «Induction motor mechanical fault on-line Diagnostic with the application of neural networks», IEEE Proceeding 2001, PP. 1015-1020.
[6] G.Zwinngelsten, « Diagnostic des défaillances: théorie et pratique pour les systèmes industriels », Ed. Hermès Paris. 1995.
[7] G. Didier and H. Razik, «Sur la détection d'un défaut au rotor des moteurs asynchrones», revue 3EI no27, December 2001, pp. 53-62. ISSN :1252-770X.
[8] J.N. Chatain ; « Diagnostic par système expert », Ed, Hermès, Paris 1993.
[9] B.Dubuisson ; « Détection et diagnostic des pannes sur processus », Technique de l-ingénieur. R7597,1992.
[10] J.Morel ; « Vibrations des machines et diagnostic de leur état mécanique », Ed. Eyrolles, 1996.
[11] J.Richalet, « Modélisation et identification des processus », Technique de l-ingénieur R7140, Avril 1987.
[12] R.Casimir, «Diagnostic des défauts des machines asynchrones par reconnaissance des formes», Thèse de doctorat, l-école doctorale d-électronique, d-électrotechnique et d-automatique de Lyon, Décembre 2003.
[13] Siemens ÔÇÿManuel-, «Vector Control ÔÇÿconpodium» , Simovert- Masterdrive 1998. Edition AF order no : 6SE7D87-6QX60.
[14] B.Chetate, DJ.Khodja, « Diagnostic en temps réel des défaillances d-un ensemble Moteur asynchrone-convertisseur électronique en utilisant les réseaux de neurones artificiels», Journal Electrotekhnika, Moscou 12/2003, pp:16-20.
[15] DJ.Khodja, B.Chetate, «ANN system for identification and localisation of faillures of anatomawed electric asynchronous drive», 2nd International Symposium on Electrical, Electronic and Computer engineering en Exhibition, March, 11-13, NEU-CEE 2004, NICOSIA, TRNC pp : 156-161.
[16] DJ.Khodja, B.Chetate, «Development of Neural Network module for fault identification in Asynchronous machine using various types of reference signals», 2nd International Conference PHYSICS and CONTROL, August,24-26, Physcon 2005, St Ptersburg, Russia. pp : 537-542.
[17] M.E.Hawary ; « Detection and lacalization of shorted turns in the DC field winding of turbine-generator rotors using novelty detection and fuzzified neural networks », Electronic Power Applications of Fuzzy Systems, Ed IEEE press, 1998, PP.85-111.
[18] N.Kandil, V.K.Sood, K.Khorasani, RV.Patel ; « Fault identification in AN AC-DC transmission using neural networks », IEEE .Transaction on power systems, May 1992, Vol.7 ,n┬░2, 1992, PP.812-819.
[19] F.Filippetti, G.Franceschini, C.Tassoni ; « Neural Networks approach to electric machine on-line diagnostics". EPE BRIGHTON 93, pp.213- 218.
[20] V.I.Komachinski, D.A.Omirnov, «Réseaux de Neurones et leurs utilisations dans les systèmes de commande et de connexion», Ed, Ligne Chaude, telecom, Moscou, 2002.
[21] V.A.Tolovka. « Réseaux de neurones : Apprentissage, Organisation et Utilisation », Ed, Entreprise de rédaction de journal ÔÇÿRadiotekhnika- Moscou, 2001.
[22] T.Sorsa, HN.Koivo, « Neural networks in process fault diagnosis », IEEE transaction on systems , vol. 21,n┬░ 4, july-august 1991.pp.815-825.
[23] M.J.Boeck ; «Experiments in the application of Neural Networks to Rotating machine fault diagnosis», IEEE Intern. Juin conf on neural network, vol.1, 1992, pp.769-774.