Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin

Authors: María D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi

Abstract:

In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae Chlorella vulgaris immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of Escherichia coli and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using Allium cepa seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.

Keywords: Bioreactor, bioremediation, Chlorella vulgaris, Matanza-Riachuelo basin, microalgae.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3298858

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856

References:


[1] M. Nassir Khan, F. Mohamed, “Eutrophication: challenges and solutions,” in Eutrophication: Causes, Consequences and Control, vol. 2, A. A. Ansari, S. S. Gill, Eds. Dordrecht: Springer Science+Business Media, 2014, pp. 1–16.
[2] Agencia de Protección Ambiental (APRA), Ministerio de Ambiente y Espacio Público, Informe Anual Ambiental 2016, retrieved from: http://cdn2.buenosaires.gob.ar/espaciopublico/apra/informe_anual_ambiental_2016.pdf. Accessed on 15/10/2018.
[3] L. E. Bashan, Y. Bashan, M. Moreno, V. K. Lebsky, and J. J. Bustillos, “Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when coimmobilized in alginate beads with the microalgae-growth promoting bacterium Azospirillum brasilense,” Can. J. Microbiol., vol. 48, 2002, pp. 514–521.
[4] L. E. de Bashan and Y. Bashan, “Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant–bacterium interactions,” Appl. Environ. Microbiol., vol. 74, 2008, pp. 6797–6802.
[5] P. J. He, B. Mao, F. Lü, L.M. Shao, D. J. Lee, and J. S. Chang. “The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters,” Bioresource Technol., vol. 146, 2013, pp. 562–568.
[6] B. Chekroun Kaoutar, E. Sánchez, and M. Baghour, “The role of algae in bioremediation of organic pollutants, Intl. Res. J. Public. Environ. Health, vol. 1, 2014, pp. 19–32.
[7] A. Trentini, M. D. Groppa, M. Zawoznik, R. Bigi, P. E. Perelman, and P. L. Marconi, “Biorremediación del lago Lugano de la Cdad. Autónoma de Bs. As. por algas unicelulares- estudios preliminares,” Terra Mundus, vol. 4, 2017, http://dspace.uces.edu.ar:8180/xmlui/handle/123456789/4302. Accessed on 05/03/2018.
[8] S. A. Covarrubias, L. E. de Bashan, M. Moreno, and Y. Bashan, “Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae,” Appl. Microbiol. Biotechnol., vol. 93, 2012, pp. 2669–2680.
[9] M. Kube, A. Mohseni, L. Fan, and F. Roddick. “Impact of alginate selection for wastewater treatment by immobilized Chlorella vulgaris,” Chem. Eng. J., vol., 2019, pp.1601-1609.
[10] M. M. El-Sheekh, M. A. Metwally, N. G. Allam, and H. E. Hendam, “Effect of algal cell immobilization technique on sequencing batch reactors for sewage wastewater treatment,” Int. J. Environ. Res., vol. 11, 2017, pp 603–611.
[11] J. R. Benavente Valdés, A. Méndez Zavala, L. Morales Oyervides, Y. Chisti, and J Montañez, “Effects of shear rate, photoautotrophy and photoheterotrophy on production of biomass and pigments by Chlorella vulgaris,” Chemical Technol, Biotechnol., vol.92, 2017, pp. 2453–2459.
[12] C. Wang and C. Lan, “Effects of shear stress on microalgae – A review,” Biotechnol. Adv., vol. 36, 2018, pp. 986–1002.
[13] M. A. D. Silveira, D. L. Ribeiro, G. M. Vieira, N. Ribeiro Demarco, and L. P. Grégio d’Arce, “Direct and indirect anthropogenic contamination in water sources: evaluation of chromosomal stability and cytotoxicity using the Allium cepa test,” Bull. Environ. Contam. Toxicol., vol. 100, 2018, pp. 216–220.
[14] D. M. Leme and A. Marin-Morales, “Allium cepa test in environmental monitoring: A review on its application,” Mutat. Res., vol. 682, 2009, pp. 71–81.
[15] T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue cultures,” Physiol. Plantarum, vol. 15, 1962, pp. 473–497.
[16] Fermenter Tool software 2018, retrieved from www.fermentertool.com/en/. Accessed on 20/07/2018.
[17] American Public Health Association (APHA), Standard methods for the examination of water and wastewater, 21st Ed., Washington DC: American Public Health Association, 2005.
[18] F. García-Ochoa and E. Gomez, “Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview,”. Biotechnol. Adv., vol. 27, 2009, pp. 153–176.
[19] G. Basílico, A. Magdaleno, M. Paz, J. Moretton, A. Faggi, and L. de Cabo, “Sewage pollution: genotoxicity assessment and phytoremediation of nutrients excess with Hydrocotyle ranunculoides,” Environ Monit. Assess., vol. 189, 2017, pp. 182.
[20] J. W. Tukey, “Some selected quick and easy methods of statistical analysis,” Trans NY Acad. Sc., vol. 16, 1953, pp. 88–97.
[21] J. A. Di Rienzo, F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada, and C. W. Robledo, InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, retrieved from http://www.infostat.com.ar. Accessed on 10/10/2018.
[22] E. Sforza, E. Armandina Ramos-Tercero, B. Gris, F. Bettin, A. Milani, and A. Bertucco, “Integration of Chlorella protothecoides production in wastewater treatment plant: From lab measurements to process design,” Algal Res., vol. 6, 2014, pp. 223–233.
[23] L. Evans, S. J. Hennige, N. Willoughby, A.J. Adeloye, M. Skroblin, and T. Gutierrez, “Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris,” Algal Res., vol. 24, 2017, pp. 368–377.
[24] EPA WEB Archive 2017, United States Environmental Protection Agency, Ground Water and Drinking Water, Basic Information about Lead in Drinking Water, retrieved from https://www.epa.gov/. Accessed on 12/07/2018.
[25] L. Regaldo, S. Gervasio, H. Troiani, and A. M. Gagneten, “Bioaccumulation and toxicity of copper and lead in Chlorella vulgaris,” J. Algal Biomass Utln., vol. 4, 2013, pp. 59–66.
[26] Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1. National Water Quality Management Strategy, October 2000.
[27] Resolución 46-E/2017, Anexo III características y valores de parámetros asociados a los usos. Ministerio de Ambiente y Desarrollo Sustentable - ACUMAR - República Argentina, 2017.
[28] Resoluciones de CONAMA, 1984-2012. Calidad de agua, Resolución N° 274, Edición Especial, Ministerio de Medio Ambiente, Brasilia, 2012, pp. 371–385.
[29] G. Mujtaba, M. Rizwan, and K. Lee K, “Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris,” J. Ind. Engin. Chem., vol. 49, 2017, pp. 145–151.
[30] P. L. Marconi, M. A. Alvarez, S. P. Klykov, and V. V. Kurako, “Application of a mathematical model for production of recombinant antibody 14D9 by Nicotiana tabacum cell suspension batch culture,” BioProcess Int., vol. 12, 2014, pp. 42–49.
[31] E. Zhang, B. Wang, S. Ning, H. Sun, B. Yang, M. Jin, and L. Hou, “Ammonia-nitrogen and orthophosphate removal by immobilized Chlorella sp. isolated from municipal wastewater for potential use in tertiary treatment,” Afr. J. Biotechnol., vol. 11, 2012, pp. 6529–6534.
[32] R. Madadi, A. A. Pourbabaee, M. Tabatabaei, M. A. Zahed, and M. R. Naghavi, “Treatment of petrochemical wastewater by the green algae Chlorella vulgaris,” Int. J. Environ. Res., vol. 10, 2016, pp. 555–560.
[33] J. L. Salgueiro, L. Pérez, R. Maceiras, A. Sánchez, and A. Cancela, “Bioremediation of wastewater using Chlorella vulgaris microalgae: phosphorus and organic matter,” Int. J. Environ. Res., vol 10, 2016, pp. 465–470.