Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29994
Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

Authors: N. K. Srivastava, M. K. Jha, I. D. Mall, Davinder Singh


The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing industrial wastewater with a high content of heavy metals. Tris-buffered mineral salt medium was used for growing Alcaligenes eutrophus AE104 (pEBZ141). The cells were cultivated for 18 h at 30 oC in Tris-buffered mineral salt medium containing 3 mM disodium sulphate and 46 mM sodium gluconate as the carbon source. The cells were harvested by centrifugation, washed, and suspended in 10 mM Tris HCl, pH 7.0, containing 46 mM sodium gluconate, and 5 mM Chromium. Interaction among induction of chr resistance determinant, and chromate reduction have been demonstrated. Results of this study show that the above bacteria can be very useful for bioremediation of chromium from industrial wastewater.

Keywords: Chromium, Genetic Engineering, IndustrialWastewater, Plasmid

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF


[1] Jennifer, "Electrowinning: New technology for removing heavy metals from wastewater", Washington DC.,
[2] S. E. Bailey, T. J. Olin, M. Bricka, D. D. A. Adrian, "A review of potentially low-cost sorbents for heavy metals", Waer. Res. vol. 33(11), pp. 2469- 2479, 1999.
[3] M. A. M. Khraisheh, Y. S. Al-degs, W. A. M. Meminn, "Remediation of wastewater containing heavy metals using raw and modified diatomite", Chem. Eng. J, vol. 99, pp. 177-184, 2004.
[4] K. C. Sekhar, C. T. Kamala, N. S. Chary, A. R. K. Sastry, "Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass", J. Hazard. Mater., vol. B108, pp. 111-117, 2004.
[5] T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, "Modeling of metal ions removal from wastewater by electrodialysis", Separ. Purif. Technol., vol. 41(1), pp. 73-82, 2005.
[6] T. N. Castro Dantas, A. A. Dantas Neto, M. C. P. A. Moura, E. L. Barros Neto, E. Paiva Telemaco, "Chromium adsorption by chitosan impregnated with microemulsion", Langmuir, vol. 17, pp. 4256-60, 2001.
[7] B. L. Carson, H. V. Ellis and J. L. McCann, Toxicology and Biological Monitoring of Metals in Humans, Lewis Publishers, Chelsea, MI, 1986, pp. 65, 71, 97, 133, 165, 297.
[8] J. W. Patterson, Wastewater Treatment Technology, USA, Ann Arbor Science Publishers, 1997.
[9] E. E. Cary, Chromium in air, soil and natural waters, biological and environmental aspects of Chromium, S. Langard, Ed., Elsevier, New York, 1982.
[10] Z. Kowalski, "Treatment of chromic tannery wastes", J. Hazard. Mater., 37, 137-144, 1994.
[11] J. W. Moore and S. Ramamoorthy, Organic Chemicals in Natural Water, Applied Monitoring and Impact Assessment, Springer-Verlag, New York, NY, 1984.
[12] National Academy of Sciences (NAS), 1974. Chromium, Medical and Biologic Effects of Environmental Pollutants, U.S. Government Printing Office, Washington D.C.
[13] IARC, 1982. IARC Monograph on the evolution of the carcinogenetic risk of chemical to humans, Suppl. 4.
[14] A. G. Levis, V. Bianchi, Mutagenic and cytogenic effects of chromium compounds, biological and environmental aspects of chromium, S. Langard, Ed., Elsevier, New York, 1982.
[15] G. M. Muir, Hazards in the Chemical Laboratory, 2nd edition, Pergamon Press, Oxford, 1997.
[16] T. J. O- Brien, S. Ceryak, S. R. Patierno, "Complexities of chromium carcinogenesis: Role of cellular response, repair and recovery mechanisms", Mutat. Res., 533 (1-2), 33-36, 2003.
[17] D. S. Runnels, T. A. Shephard, "Metals in water, determining natural background concentrations in mineralized areas", Environ. Sci. Technol., 26, 2316-23, 1992.
[18] US Department of Health and Human Services (USDHHS), 1991. Toxicological Profile for Chromium. Public Health Services Agency for Toxic substances and Diseases Registry, Washington, DC.
[19] EPA, The drinking water criteria document on Chromium, EPA 440/5- 84-030, Office of Drinking Water, U.S. Environment Protection Agency, Washington D.C, 2005.
[20] C. Cervantes, J. Campos-Garcia, S. Devars, F. Gutierrez-Corona, H. Loza-Tavera, J. C. Torres-Guzman, et al., « Interactions of Chromium with microorganisms and plants", FEMS Microbiol. Rev., 25, 335-47, 2001.
[21] B. Ram, P. K. Bajpai and H. K. Parwana, "Kinetics of Chromate-tannery effluent treatment by the activated sludge system", Process Biochem., 35, 255-65, 1999.
[22] A. S. Stasinakis, N. S. Thomaidis, D. Mamais, E. C. Papanikolaou, A. Tsakon, T. D. Lekkas, "Effect of Chromium(VI) addition on the activated sludge process", Water Res., 37, 2140-48, 2003.
[23] S. Beszedits, Chromium removal from industrial wastewater in: Nriagu O., Nieboer E. (Eds.), Chromium in the natural and human environments, John Wiley, New York, 1988, pp. 232-63.
[24] M. Pansini, C. Colella, M. D. Gennaro, "Chromium removal from water by ion-exchange using zeolite", Desalinat., 83 (1-3), 145-57, 1991.
[25] M. Pérez-Candela, J. M. Martin-Martinez, R. Torregrosa-Maci├í, "Chromium(VI) removal with activated carbons", Water Res., 29 (9), 2174-80, 1995.
[26] S. Rengaraj, Y. Kyeong-Ho, M. Seung-Hyeon, "Removal of Chromium from water and wastewater by ion-exchange resins", J. Hazard. Mater., 87, 273-287, 2001.
[27] N. Ahalya, T. V. Ramachandra, R. D. Kanamadi, "Biosorption of heavy metals", Res. J. Chem. Environ., 7 (4), 71-79, 2003.
[28] M. M. Benjamin, "Adsorption and surface precipitation of metals on amorphous iron oxyhydroxide", Environ. Sci. Technol., 17, 686-92, 1983.
[29] M. M. Benjamin, R. S. Sletten, R. P. Bailey, T. Bennett, "Sorption and filtration of metals using iron-oxide coated sand", Water Res., 30, 2009- 20, 1996.
[30] N. Peitzsch, G. Eberz and D. H. Nies, "Alcaligenes eutrophus as a bacterial chromate sensor", Appl. Environ. Microbiol., 64, 453-58, 1998.
[31] M. Mergeay, D. Nies, H. G. Schlegel, J. Gerits, P. Charles, F. Van Gijsegen, "Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid bound resistance to heavy metals", J. Bacteriol., 162, 328- 34, 1985.