Enhance Halorespiration in Rhodopseudomonas palustris with Cytochrome P450cam System from Pseudomonas putida
Authors: Shou-Chen Lo, Chia-Ching Lin, Chieh-Chen Huang
Abstract:
To decompose organochlorides by bioremediation, co-culture biohydrogen producer and dehalogenation microorganisms is a useful method. In this study, we combined these two characteristics from a biohydrogen producer, Rhodopseudomonas palustris, and a dehalogenation microorganism, Pseudomonas putida, to enchance halorespiration in R. palustris. The genes encoding cytochrome P450cam system (camC, camA, and camB) from P. putida were expressed in R. palustris with designated expression plasmid. All tested strains were cultured to log phase then presented pentachloroethane (PCA) in media. The vector control strain could degrade PCA about 78% after 16 hours, however, the cytochrome P450cam system expressed strain, CGA-camCAB, could completely degrade PCA in 12 hours. While taking chlorinated aromatic, 3-chlorobenzoate, as sole carbon source or present benzoate as co-substrate, CGA-camCAB presented faster growth rate than vector control strain.
Keywords: cytochrome P450, halorespiration, nitrogen fixation, Rhodopseudomonas palustris CGA009
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1326702
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958References:
[1] E. G. Esaac, and F. Matsumura, "Metabolism of insecticides by reductive systems," Pharmacol. Ther., vol. 9, pp. 1-26, Apr. 1980.
[2] T. D. DiStefano, J. M. Gossett, and S. H. Zinder, "Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture," Appl. Environ. Microbiol., vol. 58, pp. 3622-3629, Nov. 1992.
[3] X. Maymo-Gatell, "Isolation of a Bacterium That Reductively Dechlorinates Tetrachloroethene to Ethene," Science, vol. 276, pp. 1568-1571, 1997.
[4] C. R. Smatlak, and J. M. Gossett, "Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in and anaerobic enrichment culture," Environ. Sci. Technol., vol. 30, pp. 2850-2858, 1996.
[5] F. E. Loffler, J. M. Tiedje, and R. A. Sanford, Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology," Appl. Environ. Microbiol., vol. 65, pp. 4049-4056, Sept. 1999.
[6] C. J. Gantzer, and L. P. Wackett, "Reductive dehlorination catalyzed by bacterial transition-metal coenzymes," Environ. Sci. Technol., vol. 25, pp. 715-722, Apr. 1991.
[7] C. T. Jafvert, and N. Lee Wolfe, "Degradation of selected halogenated ethanes in anoxic sediment-water systems," Environ. Toxicol. Chem., vol. 6, pp. 827-837, Nov. 1987.
[8] F. W. Larimer, et al., "Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris," Nat. Biotechnol., vol. 22, pp. 55-61, Jan. 2004.
[9] M. J. Barbosa, J. M. S. Rocha, J. Tramper, and R. H. Wijffels, "Acetate as a carbon source for hydrogen production by photosynthetic bacteria," J. Biotechnol., vol. 85, pp. 25-33, Jan. 2001.
[10] P. Hillmer, and H. Gest, "H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures," J. Bacteriol., vol. 129, pp. 724-731, Feb. 1977.
[11] F. E. Rey, E. K. Heiniger, and C. S. Harwood, "Redirection of metabolism for biological hydrogen production," Appl. Environ. Microbiol., vol. 73, pp. 1665-1671, Mar. 2007.
[12] V. S. Kamal, and R. C. Wyndham, "Anaerobic phototrophic metabolism of 3-chlorobenzoate by Rhodopseudomonas palustris WS17," Appl. Environ. Microbiol., vol. 56, pp. 3871-3873, Dec. 1990.
[13] P. G. Egland, J. Gibson, and C. S. Harwood, "Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris," Appl. Environ. Microbiol., vol. 67, pp. 1396-1399, Mar. 2001.
[14] B. Testa, "Mechanisms of inhibition of xenobiotic-metabolizing enzymes," Xenobiotica, vol. 20, pp. 1129-1137, Jan. 1990.
[15] T. Omura, and R. Sato, "The carbon monoxdie-binding pigment of liver microsomes," J. Biol. Chem., vol. 239, pp., July 1964.
[16] W. H. Bradshaw, H. E. Conrad, E. J. Corey, I. C. Gunsalus, and D. Lednicer, "Microbiological degradation of (+)-camphor," J. Am. Chem. Soc., vol. 81, pp. 5507-5507, Oct. 1959.
[17] M. S. P. Logan, L. M. Newman, C. A. Schanke, and L. P. Wacket, "Cosubstrate effects in reductive dehalogenation by Pseudomonas putida G786 expressing cytochrome P-450CAM," Biodegradation, vol. 4, pp. 39-50, Mar. 1993.
[18] C. E. Castro, R. S. Wade, and N. O. Belser, "Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes," Biochemistry, vol. 24, pp. 204-210, Jan. 1985.
[19] T. L. Poulos, and R. Raag, "Cytochrome P450cam: crystallography, oxygen activation, and electron transfer," FASEB J., vol. 6, pp. 674-679, Jan. 1922.
[20] S. G. Bell, et al., "Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris," Biochem. Biophys. Res. Commun., vol. 342, pp. 191-196, Feb. 2006.
[21] L. Adrian, U. Szewzyk, J. Wecke, and H. Gorisch, "Bacterial dehalorespiration with chlorinated benzenes," Nature, vol. 408, pp. 580-583, Nov. 2000.
[22] M. Inui, K. Nakata, J. H. Roh, K. Zahn, and H. Yukawa, "Molecular and functional characterization of the Rhodopseudomonas palustris no. 7 phosphoenolpyruvate carboxykinase gene," J. Bacteriol., vol. 181, pp. 2689-2696, May 1999.
[23] J. A. Peterson, M. C. Lorence, and B. Amarneh, "Putidaredoxin reductase and putidaredoxin. Cloning, sequence determination, and heterologous expression of the proteins," The Journal of Biological Chemistry, vol. 265, pp. 6066-6073, Apr. 1990.
[24] I.-H. Lee, J. Park, D. Kho, M.-S. Kim, and J. Lee, "Reductive effect of H2 uptake and poly-β-hydroxybutyrate formation on nitrogenase-mediated H2 accumulation of Rhodobacter sphaeroides according to light intensity," Appl. Microbiol. Biotechnol., vol. 60, pp. 147-153, Aug. 2002.
[25] M. Inui, J. H. Roh, K. Zahn, and H. Yukawa, "Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors," Appl. Environ. Microbiol., vol. 66, pp. 54-63, Jan. 2000.
[26] J. Sambrook, E. Fritsch, and T. Maniatis, "Molecular cloning: a laboratory manual. 2nd," New York: Cold Spring Harbor Laboratory, vol. 18, pp. 58, 1989.
[27] T. J. Donohue, and S. Kaplan, "Genetic techniques in Rhodospirillaceae," Methods Enzymol., vol. 204, pp. 459-485, 1991.
[28] D. Fraga, T. Meulia, and S. Fenster, "Real-Time PCR," Curr. Protoc. Essential Lab. Tech., vol. 10, pp. 10.13.13.11-10.13.34, 2008.
[29] D. C. Ducat, G. Sachdeva, and P. A. Silver, "Rewiring hydrogenase-dependent redox circuits in cyanobacteria," Proc. Natl. Acad. Sci. U. S. A., vol. 108, pp. 3941-3946, Mar. 2011.
[30] Y. Oda, Y. P. d. Vries, L. J. Forney, and J. C. Gottschal, "Acquisition of the ability for Rhodopseudomonas palustris to degrade chlorinated benzoic acids as the sole carbon source," FEMS Microbiol. Ecol., vol. 38, pp. 133-139, Oct. 2001.