Nano-Bioremediation of Contaminated Industrial Wastewater Using Biosynthesized AgNPs and Their Nano-Composite
Authors: Osama M. Darwesh, Sahar H. Hassan, Abd El-Raheem R. El-Shanshoury, Shawky Z. Sabae
Abstract:
Nanotechnology as multidisciplinary technology is growing rapidly with important applications in several sectors. Also, nanobiotechnology is known for the use of microorganisms for the synthesis of targeted nanoparticles. The present study deals with the green synthesis of silver nanoparticles using aquatic bacteria and the development of a biogenic nanocomposite for environmental applications. 20 morphologically different colonies were isolated from the collected water samples from eight different locations at the Rosetta branch of the Nile Delta, Egypt. The obtained results illustrated that the most effective bacterial isolate (produced the higher amount of AgNPs after 24 h of incubation time) is isolate R3. Bacillus tequilensis was the strongest extracellular bio-manufactory of AgNPs. Biosynthesized nanoparticles had a spherical shape with a mean diameter of 2.74 to 28.4 nm. The antimicrobial activity of silver nanoparticles against many pathogenic microbes indicated that the produced AgNPs had high activity against all tested multi-antibiotic resistant pathogens. Also, the stabilized prepared AgNPs-SA nanocomposite has greater catalytic activity for the decolourization of some dyes like Methylene blue (MB) and Crystal violet. Such results represent a promising stage for producing eco-friendly, cost-effective, and easy-to-handle devices for the bioremediation of contaminated industrial wastewater.
Keywords: Bioremediation, AgNPs, AgNPs-SA nanocomposite, Bacillus tequilensis, nanobiotechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362References:
[1] Duran, N.; Marcato, D.P.; Alves, L.O., De Souza, G. and Esposito, E. (2005). Mechanical aspect of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol, 3:8- 15.
[2] Albrecht, M.A., Evans, C.W. and Raston, C.L. (2006). Green chemistry and the health implications of nanoparticles. Green Chem, 8:417- 432.
[3] Mahasneh, A.M. (2013). Bionanotechnology: The novel nanoparticles based approach for disease therapy. Jordan J Biol Sci, 6:246-251.
[4] Klaus, T., Joerger, R., Olsson, E. and C. G. Granqvist (2001). ‘‘Bacteria as workers in the living factory: metal accumulating and potential for materials science’’. Trends Biotechnol. , 19, 15–20.
[5] Gopinath, V. and Velusamy, P. (2013). Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta Part A, 106:170-174.
[6] Mourad, R.M., Darwesh, O.M., Abdel-Hakim, A. (2020). Enhancing physico-mechanical and antibacterial properties of natural rubber using synthesized Ag-SiO2 nanoparticles. Int. J. Biol. Macromol., 164: 3243–3249, https://doi.org/10.1016/j.ijbiomac.2020.08.063.
[7] Arunachalam, K., Annamalai, S.K., Arunachalam, A.M., Raghavendra, R. and Kennedy, S. (2014). One step green synthesis of phytochemicals mediated gold nanoparticles from Aegle marmales for the prevention of urinary catheter infection. Int J Pharm Pharm Sci, 6:700-706.
[8] Shalaby, M.G., Al-Hossainy, A.F., Abo-Zeid, A.M., Mobark, H., Darwesh, O.M., Mahmoud, Y. A.-G. (2022). Geotrichum candidum Mediated (Cu8O7 + P2O5) Nanocomposite Bio Fabrication, Characterization, Physicochemical Properties, and its In-Vitro Biocompatibility Evaluation. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-022-02252-w.
[9] Darroudi, M., Sabouri, Z., Kazemi, Oskuee R., Khorsand, Zak A, Kargar H and Hamid MHNA. (2013). Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceramics Int, 39: 9195- 9199.
[10] Darwesh, O. M.; Matter, I. A.; Eida, M. F. (2019). Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. Journal of Environmental Chemical Engineering, 7(1): 102805, 1-7. https://doi.org/10.1016/j.jece.2018.11.049.
[11] Khazaei, A., Rahmati, S., Hekmatian, Z. and Saeednia S. (2013). A green approach for the synthesis of palladium nanoparticles supported on pectin: Application as a catalyst for solvent-free Mizoroki–Heck reaction. J Mol Catal A: Chem, 372:160-166.
[12] Rajakumar, G., Rahuman, A.A., Roopan SM, Khanna VG, Elango G, Kamaraj C, Abduz Zahir A, and Velayutham K. (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A, 91:23-29.
[13] Darwesh, O. M.; Eida, M. F.; Matter, I. A. (2018). Isolation, screening and optimization of L-asparaginase producing bacterial strains inhabiting agricultural soils. Bioscience Research, 15(3): 2802-2812.
[14] Mukherjee, S., Chowdhury, D., Kotcherlakota, R., Patra, S., B V, Bhadra MP, Sreedhar B and Patra CR. (2014). Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics, 4:316-335.
[15] Con, T.H. and Loan, D.K. (2011). Preparation of silver nano-particles and use as a material for water sterilization. Environment Asia, 4:62-66.
[16] Tomšič, B., Simončič, B., Orel, B., Žerjav, M., Schroers, H., Simončič, A. and Samardžija, Z. (2009). Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr polym, 75:618-626.
[17] Furno, F., Morley, K.S., Wong, B., Sharp, B.L., Arnold PL, Howdle SM, Bayston R, Brown, P.D., Winship PD and Reid HJ. (2004). Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother, 54:1019-1024.
[18] McFarland, A.D. and Van Duyne, R.P. (2003). Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano lett, 3:1057-1062.
[19] Narayanan, K.B. and Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbe. Adv Coll Interface Sci, 156:1– 13.
[20] Korbekandi, H., Ashari, Z., Iravani, S. and Abbasi S. (2013). Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum. Iran J Pharm Res, 12:289-298.
[21] Kalimuthu, K., Babu, R.S., Venkataraman, D., Bilal, M. and Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B, 65:150-153.
[22] Shivaji, S. Madhu S., Singh, S. (2011). Extracellular synthesis of antibacterial silver NPs using psychrophilic bacteria, Process Biochem., 46(9): 1800–1807.
[23] Tran, Q.H., Nguyen, V.Q. and Le A.T. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci.: Nanosci. Nanotechnol: 4, 033001.
[24] Braydich-Stolle, L., Hussain, S. Schlager, J.J., Hofmann, M.C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci, 88:412-419.
[25] Bonigala, B., Kasukurthi, B., Konduri, V.V., Mangamuri, U.K., Gorrepati, R., Poda, S. (2018). Green synthesis of silver and gold nanoparticles using Stemona tuberosa Lour and screening for their catalytic activity in the degradation of toxic chemicals. Environ Sci Pollut Res 25(32): 1–9.
[26] Francis, S., Joseph, S., Koshy, E.P., Mathew, B. (2017). Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ Sci Pollut Res 24:17347–17357.
[27] Vanaamudan, A., Soni, H., Sudhakar, P.P. (2016). Palm shell extract capped silver nanoparticles as efficient catalysts for degradation of dyes and as SERS substrates. J Mol Liq., 215:787–794.
[28] Zhang, X., Yan, S., Tyagi, R. D., and Surampalli R. Y. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere, 82(4) : 489–494.
[29] Devi, T.B., Ahmaruzzaman, M. (2016). Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase. Environ Sci Pollut Res 23:17702–17714
[30] Nguyen, T.D (2018). Silver and gold nanoparticles biosynthesized by aqueous extract of burdock root, Arctium lappa as antimicrobial agent and catalyst for degradation of pollutants. Environ Sci Pollut Res 25(34): 1-15.
[31] APHA (American Public Health Association) (1998). Standard Methods for Examination of Water and Wastewater. Washington DC, USA, 20th Ed, 1020 p.
[32] Babu, M.M.G. and Gunasekaran, P. (2009). Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B, 74:191-195.
[33] Darwesh, O.M.; Ali, S.S.; Matter, I.A.; Elsamahy, T.; Mahmoud, Y.A. 2020. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. Methods in Enzymology, ISSN: 00766879, 630: 481-502. https://doi.org/10.1016/bs.mie.2019.11.006.
[34] Abo-State, M. A. M and Partila, A. M. (2015). Microbial Production of Silver Nanoparticles by Pseudomonas aeruginosa Cell Free Extract. Journal of Ecology of Health & Environment. 3(3): 91 -98.
[35] Holt, J.G.; Krieg, N.R.; Sneath, P.H.; Staley, J.S. and Williams, S.T. (1994). Bergey’s Manual of Determinative Bacteriology. 9th Ed., Williams and Wilkins, 787 p.
[36] Barakat, K.M., Mattar, M.Z., Sabae, S.Z., Darwesh, O.M., Hassan, S.H. (2015). Production and Characterization of Bioactive Pyocyanin Pigment by Marine Pseudomonas aeruginosa OSh1. Res. J. Pharm., Biol. Chem. Sci. 6(5): 933-943.
[37] Barakat, K.M., Hassan, S.W., Darwesh, O.M., (2017). Biosurfactant production by haloalkaliphilic Bacillus strains isolated from Red Sea, Egypt. Egypt. J. Aq. Res. 43 (3):205 –211.
[38] Kheiralla, Z.H.; Hewedy, M.A.; Mohammed, H.R. and Darwesh, O.M. (2016). Isolation of Pigment Producing Actinomycetes from Rhizosphere Soil and Application It in Textiles Dyeing. Res. J. Pharm., Biol. Chem. Sci. 7(5) : 2128-2136.
[39] Eida, M.F., Darwesh, O.M., Matter, I.A., (2018). Cultivation of oleaginous microalgae Scenedesmus obliquus on secondary treated municipal wastewater as growth medium for biodiesel production. J. Ecol. Engin. 19 (5), 38 –51.
[40] Hasanin, M.S.; Darwesh, O.M.; Matter, I.A., El-Saied, H. (2019). Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. Biocatalysis and Agricultural Biotechnology .17 :160–167.
[41] Darwesh, O. M.; Abd El-Latief, A. H.; Abuarab, M. E.; Kasem, M. A. (2021). Enhancing the efficiency of some agricultural wastes as low-cost absorbents to remove textile dyes from their contaminated solutions. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-020-01142-w.
[42] Li, H.; Yuan, Z.; Shang, X.; Shang, H.; Liu, J.; Darwesh, O. M.; Li, C.; Fang, J. (2021). Application of gradient acid fractionation protocol to improve decolorization technology by lignin-based adsorbent. Int. J. Biol. Macromol., 172: 10–18, https://doi.org/10.1016/j.ijbiomac.2020.12.206.
[43] Abdel-Monem, R.A., Khalil, A.M., Darwesh, O.M., Hashim, A.I., Rabie, S.T. 2020. Antibacterial properties of carboxymethyl chitosan Schiff-base nanocomposites loaded with silver nanoparticles, Journal of Macromolecular Science, Part A, 57: 2, 145-155, https://doi.org/10.1080/10601325.2019.1674666.
[44] Mohamed, A. A.; Ali, S. I.; Darwesh, O. M.; El-Hallouty, S. M.; Sameeh, M. Y. (2015). Chemical Compositions, Potential Cytotoxic and Antimicrobial Activities of Nitraria retusa Methanolic Extract Sub-fractions. Int. J. Toxicol. Pharmacol. Res., 7(4); 204-212.
[45] Sultan, Y. Y.; Ali, M. A.; Darwesh, O. M.; Embaby, M. A.; Marrez, D. A. (2016). Influence of Nitrogen Source in Culture Media on Antimicrobial Activity of Microcoleus lacustris and Oscillatoria rubescens. Res. J. Pharm., Biol. Chem. Sci., 7(2): 1444-1452.
[46] Li, Y.; Li, G.; Li, W.; Yang, F. (2015). Greenly synthesized gold-alginate nanocomposites catalyst for reducing decoloration of azo-dyes. Nano., 10(8):1-10.
[47] Darwesh, O. M.; El-Maraghy, S. H.; Abdel-Rahman, H. M.; Zaghloul, R. A. 2020. Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate. Fuel, 262: 116518, https://doi.org/10.1016/j.fuel.2019.116518.
[48] Kirubha, R., Alagumuthu, G. (2013). Morinda tinctoria fruit assisted biosynthesis of silver nanoparticles. Asian J. Pharm. Clin. Res. 6:60–64.
[49] Yamal, G., Sharmila, P., Rao, K.S., Pardha-Saradhi, P. (2013). In built potential of YEM medium and its constituents to generate Ag/Ag2O nanoparticles. PLoSONE, 8:e61750.
[50] Darwesh, O.M., Elshahawy, I.E. (2021). Silver nanoparticles inactivate sclerotial formation in controlling white rot disease in onion and garlic caused by the soil borne fungus Stromatinia cepivora. Eur J Plant Pathol, 160: 917–934. https://doi.org/10.1007/s10658-021-02296-7.
[51] Thangaraj, V.; Mahmud, S.; Li, W.; Yang, F.; Liu, H. (2017). Greenly synthesized silver-alginate nanocomposites for degrading dyes and bacteria. IET Nanobiotechnology. 2018, 12(1): 47-51
[52] Zhao, Y-S, Eweys, AS, Zhang, J-Y, Zhu, Y, Bai, J, Darwesh, OM, Zhang, H-B, Xiao, X. 2021. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants, 10(12): 2004. https://doi.org/10.3390/antiox10122004.
[53] Oremenalt, R.S., Herbel, M.J., Blum, J.S., Langley, S., Beveridge, T.J., Ajayan, P.M., Sutto, T., Ellis, A. V, Curran, S., (2004). Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl. Environ. Microbiol. 70, 52–60.
[54] Natarajan, K.; Selvaraj, S., Murty, V.R. (2010). Microbial production of silver nanoparticles, Dig. J. Nanomater. Biostruct. 5 (1) :135–140.
[55] Nangia, Y., Wangoo, N., Goyal, N., Shekhawat, G. and Suri, C.R. (2009). A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles Microbial Cell Factories, 8:39.
[56] Magudapathy, P., Gangopadhyay, P., Panigrahi, B.K., Nair, K.G. M., Dhara, S. (2001). Electrical transport studies of Ag nanocrystallites embedded in glass matrix. Physica B 299, 142–146.
[57] Das V.L; Thomas R.; Varghese R.T.; Soniya E.V.; Mathew J.; Radhakrishnan E. K. (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. Biotech. 4(3):121–126
[58] Mandal, S., Phadtare, S., Murali, S. (2005). Interfacing biology with nanoparticles. Curr. Appl. Phys. 5,118–127.
[59] Malarkodi, C., Annadurai, G. (2013). A novel biological approach on extracellular synthesis, and characterization of semiconductor zinc sulfide nanoparticles. Appl. Nanosci. 3, 389–395.
[60] Mahmoud, W. M.; Abdelmoneim, T. S., and Elazzazy, A. M. (2016). The Impact of Silver Nanoparticles Produced by Bacillus pumilus As Antimicrobial and Nematicide. Frontiers in Microbiology.7:1-9.
[61] Oza, G., Pandey S., Shah R., Sharon M.(2012). Extracellular Fabrication of Silver Nanoparticles using Pseudomonas aeruginosa and its Antimicrobial Assay. Advances in Applied Science Research. 3 (3):1776-1783
[62] Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 1–9.
[63] Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnol. 16, 2346-2353.
[64] Zhang M, Fan S, Hao M, Hou H, Zheng H, Darwesh OM, (2021). Improving the Fungal EPSs Production with Application of Repeated Batch Fermentation Technology Coupling with Foam Separation in the Presence of Surfactant, Process Biochemistry, 100: 82-89, https://doi.org/10.1016/j.procbio.2020.06.022.
[65] Yang, J.S., Pan, J. (2012). Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater., 60:4753–4758.
[66] Jyoti, K. Singh A. (2016). Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Engin Biotechnol.14: 311-317.
[67] Isa, N. and Lockman, Z. (2019). Methylene blue dye removal on silver nanoparticles reduced by Kyllinga brevifolia. Env. Sci. Poll. Res. 26:11482–11495.