Search results for: Big wheel bicycle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 120

Search results for: Big wheel bicycle

60 Modeling and Simulation of a Hybrid Scooter

Authors: W. K. Yap, V. Karri

Abstract:

This paper presents a hybrid electric scooter model developed and simulated using Matlab/Simulink. This hybrid scooter modeled has a parallel hybrid structure. The main propulsion units consist of a two stroke internal combustion engine and a hub motor attached to the front wheel of the scooter. The methodology used to optimize the energy and fuel consumption of the hybrid electric scooter is the multi-mode approach. Various case studies were presented to check the model and were compared to the literatures. Results shown that the model developed was feasible and valuable.

Keywords: Hybrid electric scooters, modeling and simulation, hybrid scooter energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304
59 Collaborative Tracking Control of UAV-UGV

Authors: Jae-Young Choi, Sung-Gaun Kim

Abstract:

This paper suggests a fast and stable Target Tracking system in collaborative control of UAV and UGV. Wi-Fi communication range is limited in collaborative control of UAV and UGV. Thus, to secure a stable communications, UAV and UGV have to be kept within a certain distance from each other. But existing method which uses UAV Vertical Camera to follow the motion of UGV is likely to lose a target with a sudden movement change. Eventually, UGV has disadvantages that it could only move at a low speed and not make any sudden change of direction in order to keep track of the target. Therefore, we suggest utilizing AR Drone UAV front camera to track fast-moving and Omnidirectional Mecanum Wheel UGV.

Keywords: Collaborative control, UAV, UGV, Target Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
58 Slip Suppression of Electric Vehicles using Model Predictive PID Controller

Authors: Tohru Kawabe

Abstract:

In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model Predictive Control, PID controller, Electric Vehicle, Slip suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
57 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electromechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present backstepping design based on the Euler approximate discretetime model of a continuous-time plant. Theoretical considerations are verified by numerical simulation.

Keywords: Actuator Dynamics, Backstepping, Discrete-Time Controller, Lyapunov Function, Wheeled Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
56 Unified, Low-Cost Analysis Framework for the Cycling Situation in Cities

Authors: Joerg Schweizer, Jason N. Meggs, Nazanin R. Dehkordi, Frederico Rupi, Anton Pashkevich

Abstract:

We propose a low-cost uniform analysis framework allowing comparison of the strengths and weaknesses of the bicycling experience within and between cities. A primary component is an expedient, one-page mobility survey from which mode share is calculated. The bicycle mode share of many cities remains unknown, creating a serious barrier for both scientists and policy makers aiming to understand and increase rates of bicycling. Because of its low cost and expedience, this framework could be replicated widely, uniformly filling the data gap. The framework has been applied to 13 Central European cities with success. Data is collected on multiple modes with specific questions regarding both behavior and quality of travel experience. Individual preferences are also collected, examining the conditions under which respondents would change behavior to adopt more sustainable modes (bicycling or public transportation). A broad analysis opportunity results, intended to inform policy choices.

Keywords: bicycling, modal splits, transport policy, surveys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
55 A Study of Visitors, on Service Quality, Satisfaction and Loyal in Ya Tam San Bikeway

Authors: Ching-hui Lin, Yen-Chieh Wen

Abstract:

The main purpose of this study is to analyze the feelings of tourists for the service quality of the bikeway. In addition, this study also analyzed the causal relationship between service quality and satisfaction to visitor-s lane loyalty. In this study, the Ya Tam San bikeway visitor-s subjects, using the designated convenience sampling carried out the survey, a total of 651 questionnaires were validly. Valid questionnaires after statistical analysis, the following findings: 1. Visitor-s lane highest quality of service project: the routes through the region weather pleasant. Lane "with health and sports," the highest satisfaction various factors of service quality and satisfaction, loyal between correlations exist. 4. Guided tours of bikeways, the quality of the environment, and modeling imagery can effectively predict visitor satisfaction. 5. Quality of bikeway, public facilities, guided tours, and modeling imagery can effectively predict visitor loyalty. According to the above results, the study not only makes recommendations to the government units and the bicycle industry, also asked the research direction for future researchers.

Keywords: Service quality, satisfaction, loyal, bikeway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
54 Model Predictive 2DOF PID Slip Suppression Control of Electric Vehicle under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a 2DOF (two degrees of freedom) PID (Proportional-Integral-Derivative) controller based on MPC (Model predictive control) algorithm fo slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method aims to improve the safety and the stability of EVs under braking by controlling the wheel slip ration. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model predictive control, PID controller, Two degrees of freedom, Electric Vehicle, Slip suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
53 Marketing Planning Strategy to Promote Family Agro-Tourism: A Case Study of Bang Nam Phueng Community Prapradeang District, Samutprakarn Province

Authors: Sasitorn Chetanont, Benjaporn Yamjameung

Abstract:

The objectives of this study are to increase tourism products and to develop family agro-tourism. The research methodology was to analyze internal and external situations according to MP-MF and the MC-STEPS principles.

The results of this study highlight following necessary improvements; extend the cycling routes, increase the number of bicycle rental shops, offer a recreation place for the elders, organize a space for the floating market products and increase tourism activities throughout the year. In ‘places or distribution channel’ we discuss the improvement of facilities, specifically the routes to facilitate elder visitors and visitors on wheelchairs and furthermore the arrangement of educational trips to relevant centers in the community. In ‘promotions’, we discuss the implementation of an “all inclusive package” were the agro-tourism program, health-conscious program and the elderly fun program converge.

Keywords: Marketing Planning Strategy, Agro-tourism, Bang Nam Phueng.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
52 The Development of Flying Type Moving Robot Using Image Processing

Authors: Suriyon Tansuriyavong, Yuuta Suzuki, Boonmee Choompol

Abstract:

Wheel-running type moving robot has the restriction on the moving range caused by obstacles or stairs. Solving this weakness, we studied the development of moving robot using airship. Our airship robot moves by recognizing arrow marks on the path. To have the airship robot recognize arrow marks, we used edge-based template matching. To control propeller units, we used PID and PD controller. The results of experiments demonstrated that the airship robot can move along the marks and can go up and down the stairs. It is shown the possibility that airship robot can become a robot which can move at wide range facilities.

Keywords: Template matching, moving robot, airship robot, PID control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
51 Urban Ecological Interaction: Air, Water, Light and New Transit at the Human Scale of Barcelona’s Superilles

Authors: Philip Speranza

Abstract:

As everyday transit options are shifting from autocentric to pedestrian and bicycle oriented modes for healthy living, downtown streets are becoming more attractive places to live. However, tools and methods to measure the natural environment at the small scale of streets do not exist. Fortunately, a combination of mobile data collection technology and parametric urban design software now allows an interface to relate urban ecological conditions. This paper describes creation of an interactive tool to measure urban phenomena of air, water, and heat/light at the scale of new three-by-three block pedestrianized areas in Barcelona called Superilles. Each Superilla limits transit to the exterior of the blocks and to create more walkable and bikeable interior streets for healthy living. The research will describe the integration of data collection, analysis, and design output via a live interface using parametric software Rhino Grasshopper and the Human User Interface (UI) plugin.

Keywords: Transit, urban design, GIS, parametric design, Superilles, Barcelona, urban ecology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
50 Control Strategy for an Active Suspension System

Authors: C. Alexandru, P. Alexandru

Abstract:

The paper presents the virtual model of the active suspension system used for improving the dynamic behavior of a motor vehicle. The study is focused on the design of the control system, the purpose being to minimize the effect of the road disturbances (which are considered as perturbations for the control system). The analysis is performed for a quarter-car model, which corresponds to the suspension system of the front wheel, by using the DFC (Design for Control) software solution EASY5 (Engineering Analysis Systems) of MSC Software. The controller, which is a PIDbased device, is designed through a parametric optimization with the Matrix Algebra Tool (MAT), considering the gain factors as design variables, while the design objective is to minimize the overshoot of the indicial response.

Keywords: Active suspension, Controller, Dynamics, Vehicle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
49 3D Frictionless Contact Case between the Structure of E-Bike and the Ground

Authors: Lele Zhang, HuiLeng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

China is currently the world's largest producer and distributor of electric bicycle (e-bike). The increasing number of e-bikes on the road is accompanied by rising injuries and even deaths of e-bike drivers. Therefore, there is a growing need to improve the safety structure of e-bikes. This 3D frictionless contact analysis is a preliminary, but necessary work for further structural design improvement of an e-bike. The contact analysis between e-bike and the ground was carried out as follows: firstly, the Penalty method was illustrated and derived from the simplest spring-mass system. This is one of the most common methods to satisfy the frictionless contact case; secondly, ANSYS static analysis was carried out to verify finite element (FE) models with contact pair (without friction) between e-bike and the ground; finally, ANSYS transient analysis was used to obtain the data of the penetration p(u) of e-bike with respect to the ground. Results obtained from the simulation are as estimated by comparing with that from theoretical method. In the future, protective shell will be designed following the stability criteria and added to the frame of e-bike. Simulation of side falling of the improvedsafety structure of e-bike will be confirmed with experimental data.

Keywords: Frictionless contact, penalty method, e-bike, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
48 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Sliding Mode Control, Model Predictive Control, Integral Action, Electric Vehicle, Slip suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
47 New Suspension Mechanism Using Camber Thrust for a Formula Car

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle are vital in automotive engineering. The stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswinds and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since the fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced, thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle, especially with the worrying increase of vehicle collision every day. With better safety performance of a vehicle, every driver will be more confident driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved, thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in a four-wheel vehicle, especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on the performance of both suspension systems.

Keywords: Automobile, Camber Thrust, Cornering force, Suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3556
46 EOG Controlled Motorized Wheelchair for Disabled Persons

Authors: A. Naga Rajesh, S. Chandralingam, T. Anjaneyulu, K. Satyanarayana

Abstract:

Assistive robotics are playing a vital role in advancing the quality of life for disable people. There exist wide range of systems that can control and guide autonomous mobile robots. The objective of the control system is to guide an autonomous mobile robot using the movement of eyes by means of EOG signal. The EOG signal is acquired using Ag/AgCl electrodes and this signal is processed by a microcontroller unit to calculate the eye gaze direction. Then according to the guidance control strategy, the control commands of the wheelchair are sent. The classification of different eye movements allows us to generate simple code for controlling the wheelchair. This work was aimed towards developing a usable and low-cost assistive robotic wheel chair system for disabled people. To live more independent life, the system can be used by the handicapped people especially those with only eye-motor coordination.

Keywords: Electrooculography, Microcontroller, Motors, Wheelchair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4083
45 ANFIS Modeling of the Surface Roughness in Grinding Process

Authors: H. Baseri, G. Alinejad

Abstract:

The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the ANFIS model has a better performance with respect to back-propagation neural network (BPNN) model which has been presented by the authors in previous work for estimation of the surface roughness.

Keywords: Grinding, ANFIS, Neural network, Disc dressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
44 Variable Structure Model Reference Adaptive Control for Vehicle Steering System

Authors: Ardeshir Karami Mohammadi, Mohammadreza Saee

Abstract:

A variable structure model reference adaptive control (VS-MRAC) strategy for active steering assistance of a two wheel steering car is proposed. An ideal steering system with fixed properties and moving on an ideal road is used as the reference model, and the active steering assistance system is forced to attain the same behavior as the reference model. The proposed system can treat the nonlinear relationships between the side slip angles and lateral forces on tire, and the uncertainties on friction of the road surface, whose compensation are very important under critical situations. Simulation results show improvements on yaw rate and side slip.

Keywords: Variable Structure, Adaptive Control, Model reference, Active steering assistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
43 Comparison of Different PWM Switching Modes of BLDC Motor as Drive Train of Electric Vehicles

Authors: A. Tashakori, M. Ektesabi

Abstract:

Electric vehicle (EV) is one of the effective solutions to control emission of greenhouses gases in the world. It is of interest for future transportation due to its sustainability and efficiency by automotive manufacturers. Various electrical motors have been used for propulsion system of electric vehicles in last decades. In this paper brushed DC motor, Induction motor (IM), switched reluctance motor (SRM) and brushless DC motor (BLDC) are simulated and compared. BLDC motor is recommended for high performance electric vehicles. PWM switching technique is implemented for speed control of BLDC motor. Behavior of different modes of PWM speed controller of BLDC motor are simulated in MATLAB/SIMULINK. BLDC motor characteristics are compared and discussed for various PWM switching modes under normal and inverter fault conditions. Comparisons and discussions are verified through simulation results.

Keywords: BLDC motor, PWM switching technique, in-wheel technology, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4794
42 Recent Developments in Electric Vehicles for Passenger Car Transport

Authors: Amela Ajanovic

Abstract:

Electric vehicles are considered as technology which can significantly reduce the problems related to road transport such as increasing GHG emissions, air pollutions and energy import dependency. The core objective of this paper is to analyze the current energetic, ecological and economic characteristics of different types of electric vehicles. The major conclusions of this analysis are: The high investments cost are the major barrier for broad market breakthrough of battery electric vehicles and fuel cell vehicles. For battery electric vehicles also the limited driving range states a key obstacle. The analyzed hybrids could in principle serve as a bridging technology. However, due to their tank-to-wheel emissions they cannot state a proper solution for urban areas. Finally, the most important perception is that also battery electric vehicles and fuel cell vehicles are environmentally benign solution if the primary fuel source is renewable.

Keywords: Costs, fuel intensity, electric vehicles, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
41 Comparison between Optimized Passive Vehicle Suspension System and Semi Active Fuzzy Logic Controlled Suspension System Regarding Ride and Handling

Authors: Mehrdad N. Khajavi, Vahid Abdollahi

Abstract:

The purpose of suspension system in automobiles is to improve the ride comfort and road handling. In this research the ride and handling performance of a specific automobile with passive suspension system is compared to a proposed fuzzy logic semi active suspension system designed for that automobile. The bodysuspension- wheel system is modeled as a two degree of freedom quarter car model. MATLAB/SIMULINK [1] was used for simulation and controller design. The fuzzy logic controller is based on two inputs namely suspension velocity and body velocity. The output of the fuzzy controller is the damping coefficient of the variable damper. The result shows improvement over passive suspension method.

Keywords: Suspension System, Ride Comfort, Fuzzy Logic Controller, Passive and Semi Active System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3548
40 A Novel Pareto-Based Meta-Heuristic Algorithm to Optimize Multi-Facility Location-Allocation Problem

Authors: Vahid Hajipour, Samira V. Noshafagh, Reza Tavakkoli-Moghaddam

Abstract:

This article proposes a novel Pareto-based multiobjective meta-heuristic algorithm named non-dominated ranking genetic algorithm (NRGA) to solve multi-facility location-allocation problem. In NRGA, a fitness value representing rank is assigned to each individual of the population. Moreover, two features ranked based roulette wheel selection including select the fronts and choose solutions from the fronts, are utilized. The proposed solving methodology is validated using several examples taken from the specialized literature. The performance of our approach shows that NRGA algorithm is able to generate true and well distributed Pareto optimal solutions.

Keywords: Non-dominated ranking genetic algorithm, Pareto solutions, Multi-facility location-allocation problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
39 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky

Abstract:

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system “well to wheel”.

Keywords: Bus, energy consumption, GHG, production, simulation, train.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
38 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3019
37 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
36 Investigating Causes of Pavement Deterioration in Khartoum State, Sudan

Authors: Magdi M. E. Zumrawi

Abstract:

It is quite essential to investigate the causes of pavement deterioration in order to select the proper maintenance technique. The objective of this study was to identify factors cause deterioration of recently constructed roads in Khartoum state. A comprehensive literature concerning the factors of road deterioration, common road defects and their causes were reviewed. Three major road projects with different deterioration reasons were selected for this study. The investigation involved field survey and laboratory testing on those projects to examine the existing pavement conditions. The results revealed that the roads investigated experienced severe failures in the forms of cracks, potholes, and rutting in the wheel path. The causes of those failures were found mainly linked to poor drainage, traffic overloading, expansive subgrade soils, and the use of low quality materials in construction. Based on the results, recommendations were provided to help highway engineers in selecting the most effective repair techniques for specific kinds of distresses.

Keywords: Pavement, deterioration, causes, failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4924
35 Contact Stress on the Surface of Gear Teeth with Different Profile

Authors: K. Farhangdoost, H. Heirani

Abstract:

Contact stress is an important problem in industry. This is a problem that in the first attention may be don-t appears, but disregard of these stresses cause a lot of damages in machines. These stresses occur at locations such as gear teeth, bearings, cams and between a locomotive wheel and the railroad rail. These stresses cause failure by excessive elastic deformation, yielding and fracture. In this paper we intend show the effective parameters in contact stress and ponder effect of curvature. In this paper we study contact stresses on the surface of gear teeth and compare these stresses for four popular profiles of gear teeth (involute, cycloid, epicycloids, and hypocycloid). We study this problem with mathematical and finite element methods and compare these two methods on different profile surfaces.

Keywords: Contact stress, Cycloid, Epicycloids, Finite element, Gear, Hypocycloid, Involute, Radius of curvature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
34 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin

Abstract:

In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.

Keywords: Binary cat swarm optimization, set covering problem, metaheuristic, binarization methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
33 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: Mobile robot, trajectory tracking, Lyapunov, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
32 Energy Recovery from Swell with a Height Inferior to 1.5 m

Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland

Abstract:

Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.

Keywords: Small scale wave, potential energy, optimized energy recovery, auto-adaptive system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
31 Singular Value Decomposition Based Optimisation of Design Parameters of a Gearbox

Authors: Mehmet Bozca

Abstract:

Singular value decomposition based optimisation of geometric design parameters of a 5-speed gearbox is studied. During the optimisation, a four-degree-of freedom torsional vibration model of the pinion gear-wheel gear system is obtained and the minimum singular value of the transfer matrix is considered as the objective functions. The computational cost of the associated singular value problems is quite low for the objective function, because it is only necessary to compute the largest and smallest singular values (μmax and μmin) that can be achieved by using selective eigenvalue solvers; the other singular values are not needed. The design parameters are optimised under several constraints that include bending stress, contact stress and constant distance between gear centres. Thus, by optimising the geometric parameters of the gearbox such as, the module, number of teeth and face width it is possible to obtain a light-weight-gearbox structure. It is concluded that the all optimised geometric design parameters also satisfy all constraints.

Keywords: Singular value, optimisation, gearbox, torsional vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911