Search results for: energy release rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5502

Search results for: energy release rate

5262 The Relationship between Value-Added and Energy Consumption in Iran’s Industry Sector

Authors: Morteza Raei Dehaghi, Mojtaba Molaahmadi, Seyed Mohammad Mirhashemi

Abstract:

This study aimed to explore the relationship between energy consumption and value-added in Iran’s industry sector during the time period 1973-2011. Annual data related to energy consumption and value added in the industry sector were used. The results of the study revealed a positive relationship between energy consumption and value-added of the industry sector. Similarly, the results showed that there is one-way causality between energy consumption and value-added in the industry sector.

Keywords: Energy consumption, economic growth, industry sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
5261 Perspective and Challenge of Tidal Power in Bangladesh

Authors: Md. Alamgir Hossain, Md. Zakir Hossain, Md. Atiqur Rahman

Abstract:

Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed.

Keywords: Sustainable energy, tidal power, cost analysis, power demand, gas crisis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3543
5260 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel

Authors: Sanjeev Kumar, S. K. Nath

Abstract:

Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.

Keywords: HAZ Simulation, Mechanical Properties, Peak Temperature, Ship hull steel, and Weldability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
5259 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: Fire dynamics, flame propagation, locomotive fire, soot flow pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
5258 Modified Buck Boost Circuit for Linear and Non-Linear Piezoelectric Energy Harvesting

Authors: I Made Darmayuda, Chai Tshun Chuan Kevin, Je Minkyu

Abstract:

Plenty researches have reported techniques to harvest energy from piezoelectric transducer. In the earlier years, the researches mainly report linear energy harvesting techniques whereby interface circuitry is designed to have input impedance that match with the impedance of the piezoelectric transducer. In recent years non-linear techniques become more popular. The non-linear technique employs voltage waveform manipulation to boost the available-for-extraction energy at the time of energy transfer.  The fact that non-linear energy extraction provides larger available-for-extraction energy doesn’t mean the linear energy extraction is completely obsolete. In some scenarios, such as where initial power is not available, linear energy extraction is still preferred. A modified Buck Boost circuit which is capable of harvesting piezoelectric energy using both linear and non-linear techniques is reported in this paper. Efficiency of at least 64% can be achieved using this circuit. For linear extraction, the modified Buck Boost circuit is controlled using a fix frequency and duty cycle clock. A voltage sensor and a pulse generator are added as the controller for the non-linear extraction technique. 

Keywords: Buck boost, energy harvester, linear energy harvester, non-linear energy harvester, piezoelectric, synchronized charge extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
5257 Exchange Rate Volatility, Its Determinants and Effects on the Manufacturing Sector in Nigeria

Authors: Chimaobi V. Okolo, Onyinye S. Ugwuanyi, Kenneth A. Okpala

Abstract:

This study evaluated the effect of exchange rate volatility on the manufacturing sector of Nigeria. The flow and stock market theories of exchange rate determination was adopted considering macroeconomic determinants such as balance of trade, trade openness, and net international investment. Furthermore, the influence of changes in parallel exchange rate, official exchange rate and real effective exchange rate was modeled on the manufacturing sector output. Vector autoregression techniques and vector error correction mechanism were adopted to explore the macroeconomic determinants of exchange rate fluctuation in Nigeria and to examine the influence of exchange rate volatility on the manufacturing sector output in Nigeria. The exchange rate showed an unstable and volatile movement in Nigeria. Official exchange rate significantly impacted on the manufacturing sector of Nigeria and shock to previous manufacturing sector output caused 60.76% of the fluctuation in the manufacturing sector output in Nigeria. Trade balance, trade openness and net international investments did not significantly determine exchange rate in Nigeria. However, own shock accounted for about 95% of the variation of exchange rate fluctuation in the short-run and long-run. Among other macroeconomic variables, net international investment accounted for about 2.85% variation of the real effective exchange rate fluctuation in the short-run and in the long-run. Monetary authorities should maintain stability of the exchange rates through proper management so as to encourage local production and government should formulate and implement policies that will develop other sectors of the economy as this will widen the country’s revenue base, reduce our over reliance on oil sector for our foreign exchange earnings and in turn reduce the shocks on our domestic economy.

Keywords: Exchange rate volatility, exchange rate determinants, manufacturing sector, official exchange rate, parallel exchange rate, real effective exchange rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
5256 Corrosion Study of Magnetically Driven Components in Spinal Implants by Immersion Testing in Simulated Body Fluids

Authors: Benjawan Saengwichian, Alasdair E. Charles, Philip J. Hyde

Abstract:

Magnetically controlled growing rods (MCGRs) have been used to stabilise and correct spinal curvature in children to support non-invasive scoliosis adjustment. Although the encapsulated driving components are intended to be isolated from body fluid contact, in vivo corrosion was observed on these components due to sealing mechanism damage. Consequently, a corrosion circuit is created with the body fluids, resulting in malfunction of the lengthening mechanism. Particularly, the chloride ions in blood plasma or cerebrospinal fluid (CSF) may corrode the MCGR alloys, possibly resulting in metal ion release in long-term use. However, there is no data available on the corrosion resistance of spinal implant alloys in CSF. In this study, an in vitro immersion configuration was designed to simulate in vivo corrosion of 440C SS-Ti6Al4V couples. The 440C stainless steel (SS) was heat-treated to investigate the effect of tempering temperature on intergranular corrosion (IGC), while crevice and galvanic corrosion were studied by limiting the clearance of dissimilar couples. Tests were carried out in a neutral artificial cerebrospinal fluid (ACSF) and phosphate-buffered saline (PBS) under aeration and deaeration for 2 months. The composition of the passive films and metal ion release were analysed. The effect of galvanic coupling, pH, dissolved oxygen and anion species on corrosion rates and corrosion mechanisms are discussed based on quantitative and qualitative measurements. The results suggest that ACSF is more aggressive than PBS due to the combination of aggressive chlorides and sulphate anions, while phosphate in PBS acts as an inhibitor to delay corrosion. The presence of Vivianite on the SS surface in PBS lowered the corrosion rate (CR) more than 5 times for aeration and nearly 2 times for deaeration, compared with ACSF. The CR of 440C is dependent on passive film properties varied by tempering temperature and anion species. Although the CR of Ti6Al4V is insignificant, it tends to release more Ti ions in deaerated ACSF than under aeration, about 6 µg/L. It seems the crevice-like design has more effect on macroscopic corrosion than combining the dissimilar couple, whereas IGC is dominantly observed on sensitized microstructure.

Keywords: Cerebrospinal fluid, crevice corrosion, intergranular corrosion, magnetically controlled growing rods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
5255 A Novel, Cost-effective Design to Harness Ocean Energy in the Developing Countries

Authors: S. Ayub, S.N. Danish, S.R. Qureshi

Abstract:

The world's population continues to grow at a quarter of a million people per day, increasing the consumption of energy. This has made the world to face the problem of energy crisis now days. In response to the energy crisis, the principles of renewable energy gained popularity. There are much advancement made in developing the wind and solar energy farms across the world. These energy farms are not enough to meet the energy requirement of world. This has attracted investors to procure new sources of energy to be substituted. Among these sources, extraction of energy from the waves is considered as best option. The world oceans contain enough energy to meet the requirement of world. Significant advancements in design and technology are being made to make waves as a continuous source of energy. One major hurdle in launching wave energy devices in a developing country like Pakistan is the initial cost. A simple, reliable and cost effective wave energy converter (WEC) is required to meet the nation-s energy need. This paper will present a novel design proposed by team SAS for harnessing wave energy. This paper has three major sections. The first section will give a brief and concise view of ocean wave creation, propagation and the energy carried by them. The second section will explain the designing of SAS-2. A gear chain mechanism is used for transferring the energy from the buoy to a rotary generator. The third section will explain the manufacturing of scaled down model for SAS-2 .Many modifications are made in the trouble shooting stage. The design of SAS-2 is simple and very less maintenance is required. SAS-2 is producing electricity at Clifton. The initial cost of SAS-2 is very low. This has proved SAS- 2 as one of the cost effective and reliable source of harnessing wave energy for developing countries.

Keywords: Clean Energy, Wave energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
5254 A Bathtub Curve from Nonparametric Model

Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos

Abstract:

This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.

Keywords: Bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234
5253 Methods of Estimating the Equilibrium Real Effective Exchange Rate (REER)

Authors: Pavla Ruzickova, Petr Teply

Abstract:

There are many debates now regarding undervalued and overvalued currencies currently traded on the world financial market. This paper contributes to these debates from a theoretical point of view. We present the three most commonly used methods of estimating the equilibrium real effective exchange rate (REER): macroeconomic balance approach, external sustainability approach and equilibrium real effective exchange rate approach in the reduced form. Moreover, we discuss key concepts of the calculation of the real exchange rate (RER) based on applied explanatory variables: nominal exchange rates, terms of trade and tradable and non-tradable goods. Last but not least, we discuss the three main driving forces behind real exchange rates movements which include terms of trade, relative productivity growth and the interest rate differential.

Keywords: real exchange rate, real effective exchange rate, foreign exchange, terms of trade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
5252 Game Theory Based Diligent Energy Utilization Algorithm for Routing in Wireless Sensor Network

Authors: X. Mercilin Raajini, R. Raja Kumar, P. Indumathi, V. Praveen

Abstract:

Many cluster based routing protocols have been proposed in the field of wireless sensor networks, in which a group of nodes are formed as clusters. A cluster head is selected from one among those nodes based on residual energy, coverage area, number of hops and that cluster-head will perform data gathering from various sensor nodes and forwards aggregated data to the base station or to a relay node (another cluster-head), which will forward the packet along with its own data packet to the base station. Here a Game Theory based Diligent Energy Utilization Algorithm (GTDEA) for routing is proposed. In GTDEA, the cluster head selection is done with the help of game theory, a decision making process, that selects a cluster-head based on three parameters such as residual energy (RE), Received Signal Strength Index (RSSI) and Packet Reception Rate (PRR). Finding a feasible path to the destination with minimum utilization of available energy improves the network lifetime and is achieved by the proposed approach. In GTDEA, the packets are forwarded to the base station using inter-cluster routing technique, which will further forward it to the base station. Simulation results reveal that GTDEA improves the network performance in terms of throughput, lifetime, and power consumption.

Keywords: Cluster head, Energy utilization, Game Theory, LEACH, Sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
5251 Assessment of the Benefits of Renewable Energy to the Azerbaijan Ecosystem

Authors: N. S. Imamverdiyev

Abstract:

The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. These technologies also highlight the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographic assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Potential solutions such as the use of ecological benefit measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder participation in decision-making processes are being investigated to determine the positive effects of renewable energy infrastructure on ecosystem services.

Keywords: Renewable energy, solar energy, climate change, energy production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
5250 Effect of Dose Rate of Irradiation on Ultrastructure of Duodenal Mucosa

Authors: L. Labéjof, I. Mororó, P. Galle, G. Barbosa, M.I. Severo, A.H. de Oliveira

Abstract:

Ultrastructure of duodenum mucosa of irradiated rat was studied versus dose rate of irradiation following exposure to gamma rays from 60-Cobalt source. The animals were whole body irradiated at two dose rates (1 Gy.mn-1 and 1 Gy.h-1) and three total doses (1, 2 or 4 Gy) for each dose rate. 24 or 48 h after irradiation, their small intestine was removed and samples of duodenum were processed for observations under a transmission electron microscopy. Samples of duodenum mucosa of control rats were processed in the same way. For the lower dose rate of 1 Gy.h-1, main lesions characteristic of apoptosis were detected within irradiated enterocytes at a total dose of 2 Gy and 24 h after exposure. Necrosis was noted in the samples, 48 h after exposition. For the higher dose rate of 1 Gy.mn-1, fewer changes were detected at all total doses 24 or 48 h irradiation. Thus, it was shown that the appearance of radiationinduced alterations varies not only with increasing total dose and post-irradiation time but especially with decreasing dose rate.

Keywords: Dose rate, Radiation Inury, Apoptosis, SmallBowel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
5249 High Strain Rate Characteristics of the Advanced Blast Energy Absorbers

Authors: Martina Drdlová, Michal Frank, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. Several cellular materials are widely used as core of the sandwich structures and their properties influence the response of the entire element under impact load. To optimize their performance requires the characterisation of the core material behaviour at high strain rates and identification of the underlying mechanism. This work presents the study of high strain-rate characteristics of a specific porous lightweight blast energy absorbing foam using a Split Hopkinson Pressure Bar (SHPB) technique adapted to perform tests on low strength materials. Two different velocities, 15 and 30 m.s-1 were used to determine the strain sensitivity of the material. Foams were designed using two types of porous lightweight spherical raw materials with diameters of 30- 100 *m, combined with polymer matrix. Cylindrical specimens with diameter of 15 mm and length of 7 mm were prepared and loaded using a Split Hopkinson Pressure Bar apparatus to assess the relation between the composition of the material and its shock wave attenuation capacity.

Keywords: Blast, foam, microsphere, resin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
5248 Energy Loss at Drops using Neuro Solutions

Authors: Farzin Salmasi

Abstract:

Energy dissipation in drops has been investigated by physical models. After determination of effective parameters on the phenomenon, three drops with different heights have been constructed from Plexiglas. They have been installed in two existing flumes in the hydraulic laboratory. Several runs of physical models have been undertaken to measured required parameters for determination of the energy dissipation. Results showed that the energy dissipation in drops depend on the drop height and discharge. Predicted relative energy dissipations varied from 10.0% to 94.3%. This work has also indicated that the energy loss at drop is mainly due to the mixing of the jet with the pool behind the jet that causes air bubble entrainment in the flow. Statistical model has been developed to predict the energy dissipation in vertical drops denotes nonlinear correlation between effective parameters. Further an artificial neural networks (ANNs) approach was used in this paper to develop an explicit procedure for calculating energy loss at drops using NeuroSolutions. Trained network was able to predict the response with R2 and RMSE 0.977 and 0.0085 respectively. The performance of ANN was found effective when compared to regression equations in predicting the energy loss.

Keywords: Air bubble, drop, energy loss, hydraulic jump, NeuroSolutions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
5247 Valorization of Residues from Forest Industry for the Generation of Energy

Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto

Abstract:

The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.

Keywords: Bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
5246 Sustainable Energy Supply in Social Housing

Authors: Rolf Katzenbach, Frithjof Clauss, Jie Zheng

Abstract:

The final energy use can be divided mainly in four sectors: commercial, industrial, residential, and transportation. The trend in final energy consumption by sector plays as a most straightforward way to provide a wide indication of progress for reducing energy consumption and associated environmental impacts by different end use sectors. The average share of end use energy for residential sector in the world was nearly 20% until 2011, in Germany a higher proportion is between 25% and 30%. However, it remains less studied than energy use in other three sectors as well its impacts on climate and environment. The reason for this involves a wide range of fields, including the diversity of residential construction like different housing building design and materials, living or energy using behavioral patterns, climatic condition and variation as well other social obstacles, market trend potential and financial support from government.

This paper presents an extensive and in-depth analysis of the manner by which projects researched and operated by authors in the fields of energy efficiency primarily from the perspectives of both technical potential and initiative energy saving consciousness in the residential sectors especially in social housing buildings.

Keywords: Energy Efficiency, Renewable Energy, Retro-commissioning, Social Housing, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
5245 Viscosity of Vegetable Oils and Biodiesel and Energy Generation

Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira

Abstract:

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Keywords: Biofuel, energy generation, vegetable oil, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9606
5244 A Comparison of Signal Processing Techniques for the Extraction of Breathing Rate from the Photoplethysmogram

Authors: Susannah G. Fleming Lionel Tarassenko

Abstract:

The photoplethysmogram (PPG) is the pulsatile waveform produced by the pulse oximeter, which is widely used for monitoring arterial oxygen saturation in patients. Various methods for extracting the breathing rate from the PPG waveform have been compared using a consistent data set, and a novel technique using autoregressive modelling is presented. This novel technique is shown to outperform the existing techniques, with a mean error in breathing rate of 0.04 breaths per minute.

Keywords: Autoregressive modelling, breathing rate, photoplethysmogram, pulse oximetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
5243 The Linkage of Urban and Energy Planning for Sustainable Cities: The Case of Denmark and Germany

Authors: Jens-Phillip Petersen

Abstract:

The reduction of GHG emissions in buildings is a focus area of national energy policies in Europe, because buildings are responsible for a major share of the final energy consumption. It is at local scale where policies to increase the share of renewable energies and energy efficiency measures get implemented. Municipalities, as local authorities and responsible entity for land-use planning, have a direct influence on urban patterns and energy use, which makes them key actors in the transition towards sustainable cities. Hence, synchronizing urban planning with energy planning offers great potential to increase society’s energy-efficiency; this has a high significance to reach GHG-reduction targets. In this paper, the actual linkage of urban planning and energy planning in Denmark and Germany was assessed; substantive barriers preventing their integration and driving factors that lead to successful transitions towards a holistic urban energy planning procedures were identified.

Keywords: Energy planning, urban planning, renewable energies, sustainable cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
5242 Solar Tracking System Using a Refrigerant as Working Medium for Solar Energy Conversion

Authors: S. Sendhil Kumar, S. N. Vijayan

Abstract:

Utilization of solar energy can be found in various domestic and industrial applications. The performance of any solar collector is largely affected by various parameters such as glazing, absorber plate, top covers, and heating pipes. Technology improvements have brought us another method for conversion of solar energy to direct electricity using solar photovoltaic system. Utilization and extraction of solar energy is the biggest problem in these conversion methods. This paper aims to overcome these problems and take the advantages of available energy from solar by maximizing the utilization through solar tracking system using a refrigerant as a working medium. The use of this tracking system can help increase the efficiency of conversion devices by maximum utilization of solar energy. The dual axis tracking system gives maximum energy output compared to single axis tracking system.

Keywords: Refrigerant, solar collector, solar energy, solar panel, solar tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
5241 Energy Efficiency and Renewable for Power System in Macedonia

Authors: Tomislav Stambolic, Anton Causevski

Abstract:

The deficit of power supply in Macedonia is almost 30% or reached up to 3000 GWh in a year. The existing thermal and hydro power plants are not enough to cover the power and energy, so the import increases every year. Therefore, in order to have more domestic energy supply, the new trends in renewable and energy efficiency should be implemented in power sector. The paper gives some perspectives for development of the power system in Macedonia, taking into account the growth of electricity demand and in the same time with implementation of renewable and energy efficiency. The development of power system is made for the period up to 2030 with the period of every 5 years.

Keywords: Energy, Power System, Renewable, Efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
5240 Using the Simple Fixed Rate Approach to Solve Economic Lot Scheduling Problem under the Basic Period Approach

Authors: Yu-Jen Chang, Yun Chen, Hei-Lam Wong

Abstract:

The Economic Lot Scheduling Problem (ELSP) is a valuable mathematical model that can support decision-makers to make scheduling decisions. The basic period approach is effective for solving the ELSP. The assumption for applying the basic period approach is that a product must use its maximum production rate to be produced. However, a product can lower its production rate to reduce the average total cost when a facility has extra idle time. The past researches discussed how a product adjusts its production rate under the common cycle approach. To the best of our knowledge, no studies have addressed how a product lowers its production rate under the basic period approach. This research is the first paper to discuss this topic. The research develops a simple fixed rate approach that adjusts the production rate of a product under the basic period approach to solve the ELSP. Our numerical example shows our approach can find a better solution than the traditional basic period approach. Our mathematical model that applies the fixed rate approach under the basic period approach can serve as a reference for other related researches.

Keywords: Economic Lot, Basic Period, Genetic Algorithm, Fixed Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
5239 Energy Budget Equation of Superfluid HVBK Model: LES Simulation

Authors: M. Bakhtaoui, L. Merahi

Abstract:

The reliability of the filtered HVBK model is now investigated via some large eddy simulations (LES) of freely decaying isotropic superfluid turbulence. For homogeneous turbulence at very high Reynolds numbers, comparison of the terms in the spectral kinetic energy budget equation indicates, in the energy-containing range, that the production and energy transfer effects become significant except for dissipation. In the inertial range, where the two fluids are perfectly locked, the mutual friction maybe neglected with respect to other terms. Also, the LES results for the other terms of the energy balance are presented.

Keywords: Superfluid turbulence, HVBK, Energy budget, Large Eddy Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
5238 Energy Strategy and Economic Growth of Russia

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

This article considers the problems of economic growth and Russian energy strategy. Also in this paper, the issues related to the economic growth prospects of Russian were discussed. Russian energy strategy without standing Russia`s stature in global energy markets, at the current production and extraction rates, will not be able to sustain its own production as well as fulfil its energy strategy. Indeed, Russia’s energy sector suffers from a chronic lack of investments which are necessary to modernize its energy supply system. In recent years, especially since the international financial crisis, Russia-EU energy cooperation has made substantive progress. Recently the break-through progress has been made, resulting mainly from long-term contributing factors between the countries and recent international economic and political situation changes. Analytical material presented in the article is intended for a more detailed or substantive analysis related to foreign economic relations of the countries and Russia as well.

Keywords: Russia, Energy strategy, Economic growth, Cooperation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
5237 Energy Consumption and Economic Growth in South Asian Countries: A Co-integrated Panel Analysis

Authors: S. Noor, M. W. Siddiqi

Abstract:

This study examines causal link between energy use and economic growth for five South Asian countries over period 1971-2006. Panel cointegration, ECM and FMOLS are applied for short and long run estimates. In short run unidirectional causality from per capita GDP to per capita energy consumption is found, but not vice versa. In long run one percent increase in per capita energy consumption tend to decrease 0.13 percent per capita GDP. i.e. Energy use discourage economic growth. This short and long run relationship indicate energy shortage crisis in South Asia due to increased energy use coupled with insufficient energy supply. Beside this long run estimated coefficient of error term suggest that short term adjustment to equilibrium are driven by adjustment back to long run equilibrium. Moreover, per capita energy consumption is responsive to adjustment back to equilibrium and it takes 59 years approximately. It specifies long run feedback between both variables.

Keywords: Energy consumption, Income, Panel co-integration, Causality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3313
5236 The Impact of Exchange Rate Volatility on Real Total Export and Sub-Categories of Real Total Export of Malaysia

Authors: Wong Hock Tsen

Abstract:

This study aims to investigate the impact of exchange rate volatility on real export in Malaysia. The moving standard deviation with order three (MSD(3)) is used for the measurement of exchange rate volatility. The conventional and partially asymmetric autoregressive distributed lag (ARDL) models are used in the estimations. This study finds exchange rate volatility to have significant impact on real total export and some sub-categories of real total export. Moreover, this study finds that the positive or negative exchange rate volatility tends to have positive or negative impact on real export. Exchange rate volatility can be harmful to export of Malaysia.

Keywords: Exchange rate volatility, autoregressive distributed lag, export, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
5235 The Relationship between the Energy of Gravitational Field and the Representative Pseudotensor

Authors: R. I. Khrapko

Abstract:

As is known, the role of the energy-momentum pseudotensors of the gravitational field is to extend the conservation law to the gravitational interaction by taking into account the energy and momentum of the gravitational field. We calculated the contribution of the Einstein pseudotensor to the total mass of a stationary material body and its gravitational field. It turned out that this contribution is positive, despite the fact that the mass-energy of a stationary gravitational field is negative. We concluded that the pseudotensor incorrectly describes the energy of the gravitational field. Nevertheless, this pseudotensor has been used in a large number of scientific works for 100 years. We explain this by the fact that the covariant component of the pseudotensor was regarded as the mass-energy. Besides, we prove the advantage of the covariant energy-momentum conservation law for matter in the Minkowski space-time.

Keywords: Conservation law, covariant integration, gravitation field, isolated system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
5234 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
5233 Energy Recovery from Swell with a Height Inferior to 1.5 m

Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland

Abstract:

Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.

Keywords: Small scale wave, potential energy, optimized energy recovery, auto-adaptive system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194