
 

 

  

Abstract—The reliability of the filtered HVBK model is now 

investigated via some large eddy simulations (LES) of freely 

decaying isotropic superfluid turbulence. For homogeneous 

turbulence at very high Reynolds numbers, comparison of the terms 

in the spectral kinetic energy budget equation indicates, in the 

energy-containing range, that the production and energy transfer 

effects become significant except for dissipation. In the inertial range, 

where the two fluids are perfectly locked, the mutual friction maybe 

neglected with respect to other terms. Also, the LES results for the 

other terms of the energy balance are presented. 

 

Keywords—Superfluid turbulence, HVBK, Energy budget, Large 

Eddy Simulation.  

I. INTRODUCTION 

T finite temperature, superfluid turbulence manifests 

itself as a tangle of vortex lines and can be generated in 

many ways. Turbulent thermal counter flow was the first 

turbulent flow which was studied in detail in a series of 

pioneering works of Vinen [1,2]. Liquid 4He is one of such 

quantum fluids. Helium II may be modeled using Landau’s 

two-fluid theory, in which the fluid may be considered to be 

made up of two completely mixed fluids: a viscous normal 

fluid and an inviscid superfluid. Following the pioneering 

works of Landau [3], a macroscopic model for modeling �He 

was derived by the Hall–Vinen–Bekharevich–Khalatnikov 

(HVBK) equations. In the previous flow simulation of a model 

described by the superfluid HVBK, It was concluded a 

similarity between the superfluid turbulence and the classical 

turbulence. In this respect, the HVBK model can be used to 

derive the Hall–Vinen–Bekharevich–Khalatnikov (HVBK) 

equations for large scales in isotropic superfluid turbulence. 

These equations were derived assuming flow configurations in 

which there are a large number of vortex lines aligned in 

roughly the same direction [4]. 

Our aim in this paper consists to use the superfluid energy 

budget equation in order to investigate the effect of different 

terms of the HVBK equations. Since the pioneering work from 

the LES of this model in superfluid  �He [5], the same method 

similar to those of Merahi et al. [5] is generated HVBK model 

numerically from large eddy simulation. It was predicted that 

this model is ideal to study the coupled dynamics of superfluid 

and normal fluid in the limit of intense turbulence at the 

lowest temperatures. 
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II. THE HVBK MODEL 

Following the pioneering works of Landau [3], a 

macroscopic model for modeling  �He was derived by the 

HVBK equations. This model is also expected. These 

equations were derived assuming flow configurations in which 

there are a large number of vortex lines aligned in roughly the 

same direction. While in the original Landau model the two 

fluids were independent; a mutual friction force is introduced 

in the HVBK model. These equations are written as follows 

[6]:  
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The HVBK equations have interesting limits. At T → 0 

then 9: ≈ 0, we have ν<= 0, the pure superflow equation (3) 

becomes the classical Euler equation. If T → 2.17 K 

corresponding to 9< ≈ 0, the normal fluid equation (2) 

becomes the classical Navies–Stokes equation. This two 

equations model, which has been verified in the experiment 

for Reynolds numbers less than 400, proves valid also in the 

turbulent case through the numerical results found. Therefore, 

it is seen that the HVBK model is ideal to study the coupled 

dynamics of superfluid and normal fluid, and can be used to 

derive a LES model for large scales in isotropic superfluid 

turbulence. 

In this work, we apply the same systematic approach based 

on the mathematical frame of the HVBK model and the 

convolution filter used in the work of Merahi et al. [5]. The 

filtered HVBK model is solved using a fully pseudo-spectral 

method, which is an extension of the classical Rogallo’s 

method [7] to the two-fluid model. In this paper, we analyze 

the evolution of various terms in the momentum equations of 

the HVBK model via the energy budget equation of the 

function of spectrum energy.  
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III. THE ENERGY-SPECTRUM BALANCE 

An analysis of the evolution of various terms constituting 

the equations for momentum of HVBK model, in the overall 

energy balance, observed striking similarity between ordinary 

turbulence and quantum turbulence, that is in with the vortex 

are quantized. In this paper, we consider the balance equation 

for the energy-spectrum function E (k, t) [8], this equation can 

be written in the following form:  

 
=

=� >�?, @� � AB�?, @� � CB�?, @� � D�?, @� � E        (6) 

 

The four terms on the right-hand side represent, respectively, 

production, spectral transfer, dissipation, and the friction 

force. 

A. The Energy Transfer 

It is the net rate at which energy is transferred from modes 

of lower wavenumber than k to those with wavenumbers 

higher than k up to the cutoff kc (kc is also assumed 

to be much larger than the smoothed quantized vortex 

spacing  ( F  G �1/2
). Some of its components have been 

measured directly. The nonlinear term of this spectral transfer 

is:   

 

C�?� � J?K&4&K LM4K � BNBO
BP Q . &R4�?�                (7) 

B. The dissipation spectrum 

If the dissipating eddies are isotropic, can be expanded as 

follows:  

 

D�?, @� � 2S?�>�?, @�                         (8) 

C. The mutual Friction Force 

The final term in the balance equation (6) is the friction 

force taken as follows: 
 

E � ET4 . &R4�?�                                  (9-a) 
 

ET4 � UV� � UV�                                   (9-b) 

 

with UV� and  UV� representing, respectively, the reactive and 

dissipative parts of the friction force. 

As well as in the rest of the energy-spectrum balance terms, 

the superfluid part for the term related to the tension T is as 

follows: 

 

T � TX. &R4�?�                                  (10) 

 

Recent numerical studies of the energy balance were 

performed by Wacks and Barenghi [9] using a simple shell 

model simulation, and DNS of two fluids hydrodynamics of 

Roche et al. [10]. They found a build-up of energy develops at 

high wavenumbers suggesting the need for a further 

dissipative effect. In this paper, we compare the HVBK results 

with those results in the following. 

IV. RESULT 

The spectral kinetic energy budgets for various height 

ranges are computed as a function of total wavenumber. The 

contribution of all the terms to the balance equation >�?, @� for 

the superfluid helium as shown in Fig. 1, positive values 

indicate gain and negative values indicate energy loss. The 

production and spectral energy transfer dominate the turbulent 

energy budget. The blue line of Fig. 1 shows the function of 

the energy transfer as given by (7). Some of the directly 

measured components of the energy transfer are negative at 

large scales and positive over the rest of the spectrum, 

according to [11], [12] in the classical turbulence. This is 

consistent with a predominantly downscale nonlinear cascade 

of kinetic energy. This figure clearly demonstrates the non-

existence of an inertial subrange. The energy spectrum 

becomes isotropic at such wavenumbers; because the energy 

transfer spectrum only becomes isotropic some time after the 

production goes to zero. In the energy-containing range, the 

production and energy-transfer effects become significant and 

constitute a source or a sink at each wavenumber except for 

dissipation. The representation of the dissipation spectrum by 

2γk�E�k, t� gives an estimate of the separation between the 

production and dissipation ranges. In the inertial range, 

starting at k ∼ 5, there is not much dissipation in the energy-

producing range. At other scales, which are equivalent to the 

small scales, this dissipation term works as a viscosity. 
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Fig. 1 Log–lin plots of terms in the global spectral energy budget 

>�?, @� versus wavenumber k, at 1.6 K. Superfluid: evolution of the 

various terms production P(k), spectral transfer T(k) and the 

dissipation D(k), (6)–(8). The vertical dashed line marks kc 

 

In contrast, the contribution of the tension T and the friction 

force F in the kinetic energy-balance terms are also taken into 

account. Figs. 2 and 3 show the importance of the friction 

force F and the tension T, respectively. We observe that their 

order of magnitude is very small. So, the influence of the 

mutual friction term, especially, can be neglected in the range 

10 ^�_ for superfluid and in the range 10 ^�� for normal fluid; 

the reason is that two fluids have the same velocity field 
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(�` F �a) at large scales, obviously the same energy spectrum. 

At these lowest temperatures, the relevant length scales are 

significantly larger than the expected spacing of quantized 

vortex lines [13]. So Fig. 2 shows that for large scales the 

mutual friction is sufficient to keep the two fluids locked 

together on these length scales. 
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Fig. 2 (a) Normal fluid and (b) superfluid: contribution of the 

mutual friction force for both fluid components, (9) at T = 1, 1.6, and 

2.1 K 

 

Even for the tension T of the superfluid part, in Fig. 3, at 

temperature as low as T=1.6 K, the tension T would be 

insignificant in the range 10^b. The locked fluids behave as a 

single turbulent fluid in which there is negligible dissipation. 

At T  2.1 K corresponding to 9
/9 c 1 , where the 

superfluid component can be neglected, the statistics of 

turbulent superfluid 4He become similar to those of classical 

fluids. In this respect, the contribution of the mutual friction of 

the pure superflow increases slightly at large scales as shown 

in Fig. 2 (b). 
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Fig. 3 Contribution of tension T (10), at low temperature 1.6 K 

 

It is not the same for the normal fluid part which shows its 

maximum value at T = 1.6 K (see Fig. 2 (a)). It follows that 

dissipation must be due to a combination of viscous 

dissipation in the normal fluid and mutual friction, as it is 

discussed by Vinen [13]. Therefore, a Kolmogorov spectrum 

forms, as in a classical fluid, provided of course that energy is 

dissipated by some means at or beyond the Kolmogorov 

wavenumber. 

V. CONCLUSION 

In this paper, we investigate the energy spectrum of 

superfluid turbulence generated by LES of the HVBK 

equations. Unknown subgrid terms are formally closed using 

an approximate deconvolution-type method, supplemented 

with a spectral viscosity for convection terms. The energy-

balance spectrum calculated from the LES simulation is 

compared, similarity between the superfluid turbulence and 

classical turbulence for temperature as low as 1.6 K. The 

production term and energy transfer through the spectrum play 

a vital r ole f or the energy exchange between the mean and 

the fluctuating motion. Of all the other terms, the production 

seems to be decaying faster with distance downstream. The 

LES simulations for a wide temperature range (1 ≤ T ≤ 2.1 K) 

confirm that both components of 4He are locked together with 

a single velocity field at large scales, the locking mechanism is 

the mutual friction force between the two fluids. Therefore, in 

the inertial range, where the dissipation effects are absent, the 

contribution of the mutual friction term can be neglected. 
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