Search results for: diffusion equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1573

Search results for: diffusion equations

1333 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation

Authors: Xin Luo, Jin Huang, Chuan-Long Wang

Abstract:

The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.

Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1332 Reduced Order Modeling of Natural Gas Transient Flow in Pipelines

Authors: M. Behbahani-Nejad, Y. Shekari

Abstract:

A reduced order modeling approach for natural gas transient flow in pipelines is presented. The Euler equations are considered as the governing equations and solved numerically using the implicit Steger-Warming flux vector splitting method. Next, the linearized form of the equations is derived and the corresponding eigensystem is obtained. Then, a few dominant flow eigenmodes are used to construct an efficient reduced-order model. A well-known test case is presented to demonstrate the accuracy and the computational efficiency of the proposed method. The results obtained are in good agreement with those of the direct numerical method and field data. Moreover, it is shown that the present reduced-order model is more efficient than the conventional numerical techniques for transient flow analysis of natural gas in pipelines.

Keywords: Eigenmode, Natural Gas, Reduced Order Modeling, Transient Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1331 Numerical Study of Some Coupled PDEs by using Differential Transformation Method

Authors: Reza Abazari, Rasool Abazari

Abstract:

In this paper, the two-dimension differential transformation method (DTM) is employed to obtain the closed form solutions of the three famous coupled partial differential equation with physical interest namely, the coupled Korteweg-de Vries(KdV) equations, the coupled Burgers equations and coupled nonlinear Schrödinger equation. We begin by showing that how the differential transformation method applies to a linear and non-linear part of any PDEs and apply on these coupled PDEs to illustrate the sufficiency of the method for this kind of nonlinear differential equations. The results obtained are in good agreement with the exact solution. These results show that the technique introduced here is accurate and easy to apply.

Keywords: Coupled Korteweg-de Vries(KdV) equation, Coupled Burgers equation, Coupled Schrödinger equation, differential transformation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
1330 Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia

Authors: N. A. Samat, D. F. Percy

Abstract:

The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease. 

Keywords: Dengue disease, disease mapping, numerical analysis, SIR-SI differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
1329 Nonlinear Equations with N-dimensional Telegraph Operator Iterated K-times

Authors: Jessada Tariboon

Abstract:

In this article, using distribution kernel, we study the nonlinear equations with n-dimensional telegraph operator iterated k-times.

Keywords: Telegraph operator, Elementary solution, Distribution kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
1328 Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes

Authors: Dylan M. Copeland

Abstract:

We present new finite element methods for Helmholtz and Maxwell equations on general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coefficients are admissible. The resulting approximation on the element surfaces can be extended throughout the domain via representation formulas. Numerical experiments confirm that the convergence behavior on tetrahedral meshes is comparable to that of standard finite element methods, and equally good performance is attained on more general meshes.

Keywords: Boundary elements, finite elements, Helmholtz equation, Maxwell equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
1327 Positive Solutions of Second-order Singular Differential Equations in Banach Space

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for the boundary value problem of second-order singular differential equations in Banach space, which improved and generalize the result of related paper.

Keywords: Banach space, cone, fixed point index, singular equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
1326 Numerical Study of a Class of Nonlinear Partial Differential Equations

Authors: Kholod M. Abu-Alnaja

Abstract:

In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.

Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1325 Numerical Solution of Second-Order Ordinary Differential Equations by Improved Runge-Kutta Nystrom Method

Authors: Faranak Rabiei, Fudziah Ismail, S. Norazak, Saeid Emadi

Abstract:

In this paper we developed the Improved Runge-Kutta Nystrom (IRKN) method for solving second order ordinary differential equations. The methods are two step in nature and require lower number of function evaluations per step compared with the existing Runge-Kutta Nystrom (RKN) methods. Therefore, the methods are computationally more efficient at achieving the higher order of local accuracy. Algebraic order conditions of the method are obtained and the third and fourth order method are derived with two and three stages respectively. The numerical results are given to illustrate the efficiency of the proposed method compared to the existing RKN methods.

Keywords: Improved Runge-Kutta Nystrom method, Two step method, Second-order ordinary differential equations, Order conditions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6850
1324 Positive Solutions for Systems of Nonlinear Third-Order Differential Equations with p-Laplacian

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory, we study the existence and multiplicity of the positive solutions for systems of nonlinear third-order differential equations with p-laplacian, which improve and generalize the result of related paper.

Keywords: p-Laplacian, cone, fixed point theorem, positive solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
1323 Analysis of a Spatiotemporal Phytoplankton Dynamics: Higher Order Stability and Pattern Formation

Authors: Randhir Singh Baghel, Joydip Dhar, Renu Jain

Abstract:

In this paper, for the understanding of the phytoplankton dynamics in marine ecosystem, a susceptible and an infected class of phytoplankton population is considered in spatiotemporal domain. Here, the susceptible phytoplankton is growing logistically and the growth of infected phytoplankton is due to the instantaneous Holling type-II infection response function. The dynamics are studied in terms of the local and global stabilities for the system and further explore the possibility of Hopf -bifurcation, taking the half saturation period as (i.e., ) the bifurcation parameter in temporal domain. It is also observe that the reaction diffusion system exhibits spatiotemporal chaos and pattern formation in phytoplankton dynamics, which is particularly important role play for the spatially extended phytoplankton system. Also the effect of the diffusion coefficient on the spatial system for both one and two dimensional case is obtained. Furthermore, we explore the higher-order stability analysis of the spatial phytoplankton system for both linear and no-linear system. Finally, few numerical simulations are carried out for pattern formation.

Keywords: Phytoplankton dynamics, Reaction-diffusion system, Local stability, Hopf-bifurcation, Global stability, Chaos, Pattern Formation, Higher-order stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
1322 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays

Authors: Felix Che Shu

Abstract:

We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.

Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1321 Chloride Transport in Ultra High Performance Concrete

Authors: R. Pernicová

Abstract:

Chloride resistance in Ultra High Performance Concrete (UHPC) is determined in this paper. This work deals with the one dimension chloride transport, which can be potentially dangerous particularly for the durability of concrete structures. Risk of reinforcement corrosion due to exposure to the concrete surface to direct the action of chloride ions (mainly in the form de-icing salts or groundwater) is dangerously increases. The measured data are investigated depending on the depth of penetration of chloride ions into the concrete structure. Comparative measurements with normal strength concrete are done as well. The experimental results showed that UHCP have improved resistance of chlorides penetration than NSC and also chloride diffusion depth is significantly lower in UHCP.

Keywords: Chloride, One dimensional diffusion, Transport, Salinity, UHPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
1320 A Laplace Transform Dual-Reciprocity Boundary Element Method for Axisymmetric Elastodynamic Problems

Authors: B. I. Yun

Abstract:

A dual-reciprocity boundary element method is presented for the numerical solution of a class of axisymmetric elastodynamic problems. The domain integrals that arise in the integrodifferential formulation are converted to line integrals by using the dual-reciprocity method together suitably constructed interpolating functions. The second order time derivatives of the displacement in the governing partial differential equations are suppressed by using Laplace transformation. In the Laplace transform domain, the problem under consideration is eventually reduced to solving a system of linear algebraic equations. Once the linear algebraic equations are solved, the displacement and stress fields in the physical domain can be recovered by using a numerical technique for inverting Laplace transforms.

Keywords: Axisymmetric elasticity, boundary element method, dual-reciprocity method, Laplace transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1319 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract:

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Keywords: Identification, Hammerstein-Wiener, optimization, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
1318 Demand and Price Evolution Forecasting as Tools for Facilitating the RoadMapping Process of the Photonic Component Industry

Authors: T. Kamalakis, I. Neokosmidis, D. Varoutas, T. Sphicopoulos

Abstract:

The photonic component industry is a highly innovative industry with a large value chain. In order to ensure the growth of the industry much effort must be devoted to road mapping activities. In such activities demand and price evolution forecasting tools can prove quite useful in order to help in the roadmap refinement and update process. This paper attempts to provide useful guidelines in roadmapping of optical components and considers two models based on diffusion theory and the extended learning curve for demand and price evolution forecasting.

Keywords: Roadmapping, Photonic Components, Forecasting, Diffusion Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
1317 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: Air cooling system, refrigeration, thermal ejector, thermal compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
1316 Some Rotational Flows of an Incompressible Fluid of Variable Viscosity

Authors: Rana Khalid Naeem, Waseem Ahmed Khan, Muhammad Akhtar, Asif Mansoor

Abstract:

The Navier Stokes Equations (NSE) for an incompressible fluid of variable viscosity in the presence of an unknown external force in Von-Mises system x,\ are transformed, and some new exact solutions for a class of flows characterized by equation y f x a\b for an arbitrary state equation are determined, where f x is a function, \ the stream function, a z 0 and b are the arbitrary constants. In three, out of four cases, the function f x is arbitrary, and the solutions are the solutions of the flow equations for all the flows characterized by the equationy f x a\b. Streamline patterns for some forms of f x in unbounded and bounded regions are given.

Keywords: Bounded and unbounded region, Exact solution, Navier Stokes equations, Streamline pattern, Variable viscosity, Von- Mises system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
1315 Mathematical Modeling of Storm Surge in Three Dimensional Primitive Equations

Authors: Worachat Wannawong, Usa W. HumphriesPrungchan Wongwises, Suphat Vongvisessomjai

Abstract:

The mathematical modeling of storm surge in sea and coastal regions such as the South China Sea (SCS) and the Gulf of Thailand (GoT) are important to study the typhoon characteristics. The storm surge causes an inundation at a lateral boundary exhibiting in the coastal zones particularly in the GoT and some part of the SCS. The model simulations in the three dimensional primitive equations with a high resolution model are important to protect local properties and human life from the typhoon surges. In the present study, the mathematical modeling is used to simulate the typhoon–induced surges in three case studies of Typhoon Linda 1997. The results of model simulations at the tide gauge stations can describe the characteristics of storm surges at the coastal zones.

Keywords: lateral boundary, mathematical modeling, numericalsimulations, three dimensional primitive equations, storm surge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3437
1314 Exterior Calculus: Economic Growth Dynamics

Authors: Troy L. Story

Abstract:

Mathematical models of dynamics employing exterior calculus are mathematical representations of the same unifying principle; namely, the description of a dynamic system with a characteristic differential one-form on an odd-dimensional differentiable manifold leads, by analysis with exterior calculus, to a set of differential equations and a characteristic tangent vector (vortex vector) which define transformations of the system. Using this principle, a mathematical model for economic growth is constructed by proposing a characteristic differential one-form for economic growth dynamics (analogous to the action in Hamiltonian dynamics), then generating a pair of characteristic differential equations and solving these equations for the rate of economic growth as a function of labor and capital. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian for economic growth dynamics is obtained.

Keywords: Differential geometry, exterior calculus, Hamiltonian geometry, mathematical economics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
1313 Iterative Solutions to Some Linear Matrix Equations

Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan

Abstract:

In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.

Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
1312 Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.

Keywords: Adult, basal metabolic rate, FAO/WHO/UNU, obesity, prediction equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
1311 Septic B-spline Collocation Method for Solving One-dimensional Hyperbolic Telegraph Equation

Authors: Marzieh Dosti, Alireza Nazemi

Abstract:

Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this paper, a numerical solution for the one-dimensional hyperbolic telegraph equation by using the collocation method using the septic splines is proposed. The scheme works in a similar fashion as finite difference methods. Test problems are used to validate our scheme by calculate L2-norm and L∞-norm. The accuracy of the presented method is demonstrated by two test problems. The numerical results are found to be in good agreement with the exact solutions.

Keywords: B-spline, collocation method, second-order hyperbolic telegraph equation, difference schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
1310 On Problem of Parameters Identification of Dynamic Object

Authors: Kamil Aida-zade, C. Ardil

Abstract:

In this paper, some problem formulations of dynamic object parameters recovery described by non-autonomous system of ordinary differential equations with multipoint unshared edge conditions are investigated. Depending on the number of additional conditions the problem is reduced to an algebraic equations system or to a problem of quadratic programming. With this purpose the paper offers a new scheme of the edge conditions transfer method called by conditions shift. The method permits to get rid from differential links and multipoint unshared initially-edge conditions. The advantage of the proposed approach is concluded by capabilities of reduction of a parametric identification problem to essential simple problems of the solution of an algebraic system or quadratic programming.

Keywords: dynamic objects, ordinary differential equations, multipoint unshared edge conditions, quadratic programming, conditions shift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1309 A Necessary Condition for the Existence of Chaos in Fractional Order Delay Differential Equations

Authors: Sachin Bhalekar

Abstract:

In this paper we propose a necessary condition for the existence of chaos in delay differential equations of fractional order. To explain the proposed theory, we discuss fractional order Liu system and financial system involving delay.

Keywords: Caputo derivative, delay, stability, chaos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
1308 Species Spreading due to Environmental Hostility, Dispersal Adaptation and Allee Effects

Authors: Sanjeeva Balasuriya

Abstract:

A phenomenological model for species spreading which incorporates the Allee effect, a species- maximum attainable growth rate, collective dispersal rate and dispersal adaptability is presented. This builds on a well-established reaction-diffusion model for spatial spreading of invading organisms. The model is phrased in terms of the “hostility" (which quantifies the Allee threshold in relation to environmental sustainability) and dispersal adaptability (which measures how a species is able to adapt its migratory response to environmental conditions). The species- invading/retreating speed and the sharpness of the invading boundary are explicitly characterised in terms of the fundamental parameters, and analysed in detail.

Keywords: Allee effect, dispersal, migration speed, diffusion, invasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
1307 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface

Authors: A. A. Sharma, B. J. N. Sharma

Abstract:

This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor half-space and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers’ diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.

Keywords: Quasilongitudinal, reflection and transmission, semiconductors, acoustics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
1306 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.

Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
1305 Frequency Transformation with Pascal Matrix Equations

Authors: Phuoc Si Nguyen

Abstract:

Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.

Keywords: Frequency transformation, Bilinear z-transformation, Pre-warping frequency, Digital filters, Analog filters, Pascal’s triangle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
1304 Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

Authors: A.R.M. Kasim, N.F. Mohammad, Aurangzaib, S. Sharidan

Abstract:

The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well.

Keywords: boundary layer flow, Newtonian heating, sphere, viscoelastic fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408