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Abstract—In this paper we propose a necessary condition for
the existence of chaos in delay differential equations of fractional
order. To explain the proposed theory, we discuss fractional order
Liu system and financial system involving delay.
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I. INTRODUCTION

FRACTIONAL calculus (FC) [1] deals with differentiation
and integration of arbitrary real or complex order. Though

the history of this subject dates back to 300 years, the
applications are rather recent. Fractional calculus has wide
range of applications in control theory [2], viscoelasticity [3],
diffusion [4], mechanics [5], signal processing [6], biology [7]
and social sciences [8]. In the recent article [9], Machado has
discussed the applications of FC in the deoxyribonucleic acid
(DNA) code, financial market evolution, earthquake dynamics,
global warming and musical compositions.

Delay differential equations of fractional order (FDDE)
involves non-integer order derivatives as well as time delays.
These equations have found many applications in Control
Theory [10], Agriculture [11], Chaos [12] and so on. Recently,
we have studied delayed fractional Bloch equation [13] arising
in NMR.

Since the fractional derivative is non-local, it has ability
to model memory and hereditary properties. The time-delay
[14] in the model is also having similar properties. Hence, the
models containing fractional derivative as well as time-delay
are crucial. The stability analysis of fractional delay systems
has been studied by many researchers [15], [16], [17], [18],
[19], [20].

Though there are some articles dealing with FDDEs, very
few of them study the chaos. According to author’s knowledge,
no any necessary condition for the existence of chaos in FD-
DEs is available in the literature. We propose such condition
in this article. The paper is organized as follows. Section II
presents basic definitions in FC, a numerical algorithm for
solving FDDEs and the stability analysis. Section III develops
the necessary condition for the existence of chaos in FDDEs.
Some examples supporting the analysis are presented in Sec-
tion IV. Finally, Section V outlines the main conclusions.

II. PRELIMINARIES

A. Fractional Calculus

Let us start with some definitions [1], [21].
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Definition 2.1: A real function f(t), t > 0 is said to be in
space Cα, α ∈ � if there exists a real number p (> α), such
that f(t) = tpf1(t) where f1(t) ∈ C[0,∞).

Definition 2.2: A real function f(t), t > 0 is said to be in
space Cmα , m ∈ IN

⋃ {0} if f (m) ∈ Cα.
Definition 2.3: Let f ∈ Cα and α ≥ −1, then the (left-

sided) Riemann–Liouville integral of order μ, μ > 0 is given
by

Iμf(t) =
1

Γ(μ)

∫ t

0

(t− τ)μ−1f(τ) dτ, t > 0. (1)

Definition 2.4: The (left sided) Caputo fractional derivative
of f , f ∈ Cm−1, m − 1 < μ < m, m ∈ IN

⋃ {0} , is defined
as:

Dμf(t) =
dm

dtm
f(t), μ = m

= Im−μ d
mf(t)

dtm
. (2)

Note that for m− 1 < μ ≤ m, m ∈ IN,

IμDμf(t) = f(t)−
m−1∑
k=0

dkf

dtk
(0)

tk

k!
, (3)

Iμtν =
Γ(ν + 1)

Γ(μ+ ν + 1)
tμ+ν . (4)

B. Numerical method for solving fractional differential equa-
tions

Bhalekar and Daftardar-Gejji have modified Adams-
Bashforth method [22], [23], [24] to solve delay differential
equations of fractional order (FDDE) [25]. The method is
described below.

Consider the FDDE

Dαy(t) = f (t, y(t), y(t− τ)) , t ∈ [0, T ] , (5)
y(t) = g(t), t ∈ [−τ, 0] , 0 < α ≤ 1. (6)

where Dα denotes Caputo fractional derivative of order α ∈
(0, 1]. We use Caputo derivatives because we can define
properly the initial conditions as well as because the systems
to be solved is a linear one. Applying fractional integration
Iα on both sides of (5) and using (6) we obtain

y (t) = g(0) +
1

Γ(α)

∫ t

0

(t− ξ)
α−1

f (ξ, y(ξ), y (ξ − τ)) dξ.

(7)
Consider a uniform grid
{tn = nh : n = −k,−k + 1, · · · ,−1, 0, 1, · · · , N}
where k and N are integers such that h = T/N and h = τ/k.
Let

yh (tj) = g (tj) , j = −k,−k + 1, · · · ,−1, 0 (8)
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and note that

yh (tj − τ) = yh (jh− kh)

= yh (tj−k) , j = 0, 1, · · · , N (9)

Suppose we have already calculated approximations
yh (tj) ≈ y (tj),
(j = −k,−k + 1, · · · ,−1, 0, 1, · · · , n) and we want to calcu-
late yh (tn+1) using

y (tn+1)

= g(0) +∫ tn+1

0

(tn+1 − ξ)
α−1

Γ(α)
f (ξ, y(ξ), y (ξ − τ)) dξ.(10)

We use approximations yh (tn) for y (tn) in (10). The integral
on right hand side of (10) is evaluated using the product
trapezoidal quadrature formula. We obtain

yh (tn+1)

= g(0) +
hα

Γ(α+ 2)
f (tn+1, yh (tn+1) , yh (tn+1 − τ))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1f (tj , yh (tj) , yh (tj − τ))

= g(0) +
hα

Γ(α+ 2)
f (tn+1, yh (tn+1) , yh (tn+1−k))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1f (tj , yh (tj) , yh (tj−k)) , (11)

where aj,n+1 are given by

aj,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

nα+1 − (n− α)(n+ 1)α, if j = 0,
(n− j + 2)α+1 + (n− j)α+1

−2(n− j + 1)α+1, if 1 ≤ j ≤ n,
1, if j = n+ 1.

(12)
The unknown term yh (tn+1) appears on both sides of (11)
and due to nonlinearity of f equation (11) can not be solved
explicitly for yh (tn+1). So we replace the term yh (tn+1) on
the right hand side by an approximation yPh (tn+1), called
predictor.

Product rectangle rule is used in (10) to evaluate predictor
term

yPh (tn+1)

= g(0) +
1

Γ(α)

n∑
j=0

bj,n+1f (tj , yh (tj) , yh (tj − τ))

= g(0) +
1

Γ(α)

n∑
j=0

bj,n+1f (tj , yh (tj) , yh (tj−k)) ,(13)

where bj,n+1 is given by

bj,n+1 =
hα

α
((n+ 1− j)

α − (n− j)
α
) . (14)

C. Stability of fractional order linear system with delay

Consider the fractional order linear system of delay differ-
ential equations:

Dαx1(t) =
n∑
i=1

a1ixi (t− τ1i)

Dαx2(t) =
n∑
i=1

a2ixi (t− τ2i)

... (15)

Dαxn(t) =

n∑
i=1

anixi (t− τni)

and the characteristic matrix

Δ(λ) =⎛
⎜⎜⎜⎝

λα − a11e
−λτ11 −a12e−λτ12 · · · −a1ne−λτ1n

−a21e−λτ21 λα − a22e
−λτ22 · · · −a2ne−λτ2n

...
...

...
−an1e−λτn1 −an2e−λτn2 · · · λα − anne

−λτnn

⎞
⎟⎟⎟⎠

Theorem 2.1: [26] If all the roots of characteristic equation
det(Δ(λ)) = 0 have negative real parts, then the zero solution
of system (15) is asymptotically stable.

III. THEORY

Consider a nonlinear system of fractional order delay dif-
ferential equations

Dαxi(t) = fi (x1(t), · · · , xn(t), x1(t− τ), · · · , xn(t− τ)) ,
(16)

i = 1, · · · , n, 0 < α ≤ 1. An equilibrium point X∗ =
(x∗1, · · · , x∗n) of the system (16) satisfies

fi (x
∗
1, · · · , x∗n, x∗1, · · · , x∗n) = 0, i = 1, · · · , n. (17)

To identify the stability of equilibrium point we perturb the
solution around X∗ by a time dependent function ξ(t) =
(ξ1(t), · · · , ξn(t)). Denoting xi = xi(t) and xiτ = xi(t− τ),
we have xi = ξi + x∗i , xiτ = ξiτ + x∗i . Then

Dαξi = Dαxi (18)
= fi (ξ1 + x1, · · · , ξn + xn, ξ1τ + x1τ , · · · , ξnτ + xnτ ) .

Using Taylor series expansion, the equation (18) can be
linearized about equilibrium point X∗ as

Dαξ = Jξ + Jτ ξτ , (19)

where

J =

(
∂fi
∂xj

)
i,j=1,··· ,n

is the Jacobian matrix with respect to X evaluated at X =
Xτ = X∗ and

Jτ =

(
∂fi
∂xjτ

)
i,j=1,··· ,n
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is the Jacobian matrix with respect to Xτ evaluated at X =
Xτ = X∗. Thus the characteristic equation of the equilibrium
point is

|J + e−λτJτ − λαI| = 0, (20)

where I is the identity matrix.

If all the roots λ of characteristic equation (20) have
negative real parts, then the equilibrium point of system (16)
is asymptotically stable.

A. Necessary condition for existence of chaos

Consider the fractional order nonlinear system (16) with
delay. A necessary condition for the system (16) to exhibit
chaos is the instability of the equilibrium points. According to
the discussion in Section III, this condition can be written as:
“If the system (16) is chaotic then there exist a root of the
characteristic equation (20) having positive real part”.

IV. ILLUSTRATIVE EXAMPLES

In this section, we discuss the examples available in the
literature viz. Liu system and financial system.

Example 4.1: Consider the fractional order Liu system with
delay [27]

Dαx (t) = a (y (t)− x (t− τ)) ,

Dαy (t) = bx (t− τ)− kx (t) z (t) ,

Dαz (t) = −cz (t− τ) + hx2 (t) , (21)

where a = 10, b = 40, k = 1, c = 2.5, h = 4.
Now we use our theory and get the stability bounds. The

characteristic equation at an equilibrium point (5, 5, 40) turns
out to be:

det

⎛
⎝ λα + 10e−λτ −10 0

40− 40e−λτ λα 5
−40 0 λα + 2.5e−λτ

⎞
⎠ = 0. (22)

If we plot Re(λ) for fixed α then the region of curve below
x-axis is in the stable region Re(λ) < 0. For chaos, the values
of τ should be chosen so that the Re(λ) > 0. In the Table 1,
we have discussed different cases of fixed values for α and the
corresponding unstable regions given in the figures. We also
have listed the chaotic regions for these values of α which are
available in [27].

TABLE I
UNSTABLE REGIONS FOR LIU SYSTEM.

No. α Unstable region Chaos[27] Fig
1 1 0 ≤ τ ≤ 0.028 0 ≤ τ ≤ 0.005 1(a)
2 0.97 0 ≤ τ ≤ 0.021 0 ≤ τ ≤ 0.005 1(b)
3 0.94 0 ≤ τ ≤ 0.015 0 ≤ τ ≤ 0.009 1(c)
4 0.90 0 ≤ τ ≤ 0.008 0 ≤ τ ≤ 0.007 1(d)

It is clear from the Table I and Figures 1-4 that the chaotic
regions observed in [27] are in the unstable regions obtained
by our theory. It can be observed that the unstable region
decreases for smaller values of α.

0.01 0.02 0.03 0.04 0.05
Τ

�1

1

2

Re�Λ�

Fig. 1. Liu system, α = 1
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Τ
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1
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Fig. 2. Liu system, α = 0.97
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Fig. 3. Liu system, α = 0.94
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Τ

�3
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�1

1

Re�Λ�

Fig. 4. Liu system, α = 0.90

Example 4.2: In [28], Zen et al. have studied the fractional
order financial system given by

Dαx (t) = z(t) + (y(t− τ)− a)x(t),

Dαy (t) = 1− by(t)− x2 (t− τ) ,

Dαz (t) = −x (t− τ)− cz(t), (23)
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Fig. 5. Financial system, α = 0.97
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Fig. 6. Financial system, α = 0.90
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Fig. 7. Financial system, α = 0.85

where a = 3, b = 0.1 and c = 1. The characteristic equation
at an equilibrium point (

√
15/5, 4,−√

15/5) is

det

⎛
⎜⎝ λα − 1 −

√
15
5 e−λτ −1

2
√
15
5 e−λτ λα + 0.1 0
e−λτ 0 λα + 1

⎞
⎟⎠ = 0. (24)

We have compared the results given in [28] with our theory
in Table 2.

TABLE II
UNSTABLE AND CHAOTIC REGIONS FOR FINANCIAL SYSTEM.

No. α Unstable region Chaos [28] Fig
1 0.97 τ ≥ −0.15 0 < τ ≤ 0.06 2(a)
2 0.90 τ ≥ −0.06 0 < τ ≤ 0.15 2(b)
3 0.85 τ ≥ −0.01 0 < τ ≤ 0.05 2(c)

It can be observed from the Table II and Figures 5-7 that
the chaotic regions observed by Zen et al. are in the unstable
regions obtained from our theory.

V. CONCLUSION

In this paper, we have used the stability analysis and
proposed a necessary condition for the existence of chaos in
fractional order delay differential equations (FDDE). Exam-
ples from the existing literature are discussed. It is verified that
our theory is well in agreement with the results obtained in the
literature using numerical simulations. According to author’s
knowledge, no such criterion for the existence of chaos was
proposed before for FDDEs. Also, very few research articles
are devoted for the investigation of chaos in FDDEs. We hope
that this work will help researchers in this field.
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