Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31103
Some Rotational Flows of an Incompressible Fluid of Variable Viscosity

Authors: Rana Khalid Naeem, Waseem Ahmed Khan, Muhammad Akhtar, Asif Mansoor


The Navier Stokes Equations (NSE) for an incompressible fluid of variable viscosity in the presence of an unknown external force in Von-Mises system x,\ are transformed, and some new exact solutions for a class of flows characterized by equation y f x a\b for an arbitrary state equation are determined, where f x is a function, \ the stream function, a z 0 and b are the arbitrary constants. In three, out of four cases, the function f x is arbitrary, and the solutions are the solutions of the flow equations for all the flows characterized by the equationy f x a\b. Streamline patterns for some forms of f x in unbounded and bounded regions are given.

Keywords: exact solution, variable viscosity, Bounded and unbounded region, Navier Stokes equations, Streamline pattern, Von- Mises system

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088


[1] E. W. Hardiman and A. H. Nissan, "A rational basis for the viscosity index system." I. J. Inst. Petrol. 31, pp. 255-270, 1945.
[2] E. Z. Mohr, "Laminar and turbulent flow with special consideration of the effect of rigid walls". Phys. 121, (5-8), pp. 301-350, 1943.
[3] A. F. H. Ward, S. M. Neale. and Bilton. N. F., "Viscosity of liquids at high rates of shear." Letter in Nature. Lond. 166, pp. 905, 1950.
[4] A. V. Brancker, "Viscosity-temperature dependence." Letter in Nature. Lond. 166, pp. 905-906, 1950.
[5] J. Belval, "The principle of least constraint applied to the dynamics of incompressible fluids. Bull. Acad. Roy. Belge. Cl. Sci. 36, 8-9, pp. 639- 648, 1950.
[6] W. R. Dean, "Slow motion of viscous liquid in a semi infinite channel." Proc.Camb. Phil. Soc 47, pp. 127-141, 1951.
[7] E. Lahaye, "Contribution to the solution of the equations of motion of a fluid and of the equations of general atmospheric circulation." Inst. Roy. Met. Bleg. Mem. 38, pp. 78, 1950.
[8] D. G. Christopherson, "Hydrodynamic lubrication: general survey." Brit. J. Appl. Phys. 1. (Physics of lubrication), pp. 1-7, 1951.
[9] G. W. Morgan, "A study of motion in a rotating liquid." Proc. Roy. Soc. A. 206, pp. 108-130, 1950.
[10] V. I. Yatseev, "One class of the exact solution of the equation of motion of a viscous liquid." J. Exp. Theor. Phys. (USSR), 20, pp. 1031-1034, 1950.
[11] Y. Takaisi, "Note on the drag in a circular cylinder moving with low speeds in a viscous liquid between two parallel walls." J. Phys. Soc. Japan. 11, No. 9, pp. 1009-1013, 1956.
[12] A. Mukgerjee, "Flow of an incompressible jet with a distribution of tempreture on the axis." Indian J. Pure Appl. Phys. 5, No. 4, pp. 151-152. 1967.
[13] A. Davey and P. G. Drazin, "The stability of poisseuille flow in a pipe." J. Fluid Mech. (GB), 36, pt. 2, pp. 209-218. 1969.
[14] A. Yoshizawa, "Viscous flow past a semi infinite flat plate to the second Ocean-type approximation." J. Phys. Soc. Jap. 30 No. 6, 1757 et seq., 1971.
[15] J. Zhu, "The boundary integral equation method for incompressible viscous flows with slip boundary condition." Z. Angew. Math. Mech. 70, No. 6, pp. 717-719, 1990.
[16] M. N. Zakharenkov, "Spetial features of difference schemes for solving two-dimensional Navier-Stokes equations connected with the formulation of boundary conditions at a solid surface." Zh. Vychisl. Mat. Mat. Fiz. (USSR) 30, No. 8, pp. 1224-1236, 1990.
[17] K. Onishi and K. Yamasaki, "Thermal circulation in deep water reservoir," in Proc. First International-Conf. Advance Computational Methods in Heat Transfer. Southampotn UK, 1990, pp. 183-194.
[18] R. K. Naeem and S. S. Ali, "Exact solutions of the equations of motion of an incompressible fluid of variable viscosity." Kar. Univ. J. Sc. 22 (1&2), pp. 97-100, 1994.
[19] R. K. Naeem, "Exact solutions of flow equations of an incompressible fluid of variable viscosity via one-parameter group." JSE. 19 No. 1, pp. 111-114, 1994.
[20] R. K. Naeem, "Steady plane flows of an incompressible fluid of variable viscosity via Hodograph transformation method." Kar. Univ. J. Sc. 31 No.1, pp. 73-89, 1995.
[21] M. H. Martin, "The flow of viscous fluid." Arch. Rat. Mech. Anal. 41, pp. 266-286, 1971.
[22] R. K. Naeem and S. M. Ali, "Steady aligned flows of an incompressible second-grade fluid of finite electrical conductivity." Journal of Scientific Research, vol. XXVI, No. 1 & 2, pp. 1-11, 1997.
[23] R. K Naeem and M. Imtiaz, "On exact solutions of the equations of motion of an incompressible fluid of variable viscosity in the presence of unknown external force." Sindh Univ. Res. J. , vol.39, no.2, pp. 1-18, 2007.