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Abstract—Recently, it is found that telegraph equation is more
suitable than ordinary diffusion equation in modelling reaction diffu-
sion for such branches of sciences. In this paper, a numerical solution
for the one-dimensional hyperbolic telegraph equation by using the
collocation method using the septic splines is proposed. The scheme
works in a similar fashion as finite difference methods. Test problems
are used to validate our scheme by calculate L2-norm and L∞-norm.
The accuracy of the presented method is demonstrated by two test
problems. The numerical results are found to be in good agreement
with the exact solutions.

Keywords—B-spline; collocation method; second-order hyperbolic
telegraph equation; difference schemes.

I. INTRODUCTION

WE Let the following be the second-order linear hyper-
bolic telegraph equation in one-space dimension:

∂2u

∂t2
+ 2α

∂u

∂t
+ β2u =

∂2u

∂x2
+ f(x, t), a ≤ x ≤ b, t ≥ 0, (1)

subject to initial conditions

u(x, 0) = f0(x), a < x < b, (2)
∂u(x, 0)
∂t

= f1(x), a < x < b, (3)

and Dirichlet boundary conditions

u(a, t) = g0(t), u(b, t) = g1(t), (4)

ux(a, t) = g2(t), ux(b, t) = g3(t), (5)

uxx(a, t) = g4(t), uxx(b, t) = g5(t), (6)

where α and β are known constant coefficients. We assume
that f0(x), f1(x) and their derivatives are continuous functions
of x, and gp(t), p = 0, ..., 5 and their derivatives are
continuous functions of t. Both the electric voltage and the
current in a double conductor, satisfy the telegraph equation,
where x is distance and t is time. For α > 0, β = 0 Eq. (1)
represents a damped wave equation and for α > β > 0, it is
called telegraph equation.

The hyperbolic partial differential equations model the
vibrations of structures (e.g. buildings, beams and machines)
and are the basis for fundamental equations of atomic physics.
Equations of the form Eq. (1) arise in the study of propagation
of electrical signals in a cable of transmission line and wave
phenomena. Interaction between convection and diffusion or
reciprocal action of reaction and diffusion describes a number
of nonlinear phenomena in physical, chemical and biological
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process [1]-[4]. In fact the telegraph equation is more suitable
than ordinary diffusion equation in modeling reaction diffu-
sion for such branches of sciences. For example biologists
encounter these equations in the study of pulsate blood flow
in arteries and in one- dimensional random motion of bugs
along a hedge [5]. Also the propagation of acoustic waves in
Darcy-type porous media [6], and parallel flows of viscous
Maxwell fluids [7] are just some of the phenomena governed
[8]-[9] by Eq. (1).

The theory of spline functions is very active field of
approximation theory, boundary value problems and partial
differential equations, when numerical aspects are considered.
Among the various classes of splines, the polynomial spline
has been received the greatest attention primarily because it
admits a basis of B-splines [10]-[14] which can be accurately
and efficiently computed. As the piecewise polynomial, B-
spline have also become a fundamental tool for numerical
methods to get the solution of the differential equations. In this
paper, numerical solution of the hyperbolic telegraph equation
by using the septic B-spline collocation scheme is proposed.
The collocation method together with B-spline approximations
represents an economical alternative since it only requires the
evaluation of the unknown parameters at the grid points. As
is known, the success of the B-spline collocation method is
dependent on the choice of B-spline basis. The septic B-spline
basis has been used to build up the approximation solutions
for some differential equations. For instance see [15]-[17].

In what follows, it is shown that how we use the B-spline
collocation method to approximate the solution of the the
hyperbolic telegraph equation in section 2. To demonstrate
the efficiency of the proposed method, numerical experiments
are carried out for several test problems and results are given
in section 3. In section 4 the conclusion is given in the last
Section. Finally some references are introduced at the end.
Note that we have computed the numerical results by Matlab
programming.

II. UNIVARIATE B-SPLINE QUASI-INTERPOLANTS

We consider a mesh a = x0 < x1 < ... < xN = b as a
uniform partition of the solution domain a ≤ x ≤ b by the
knots xj , and h = xj+1 − xj , j = −3,−2,−1, 0, ..., N,N +
1, N + 2, N + 3. Let the septic B-spline function φm(x) at
these knots are given by:

φm(x) =
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TABLE I
THE VALUES OF φm, φ

′
m, φ

′′
m, φ

′′′
m .

x xm−4 xm−3 xm−2 xm−1 xm xm+1 xm+2 xm+3 xm+4

φi 0 1 120 1191 2416 1191 120 1 0

φ
′
i 0 7

h
392

h
1715

h
0 −1715

h
−392

h
−7

h
0

φ
′′
i 0 42

h2
1008

h2
630

h2
−3360

h2
630

h2
1008

h2
42

h2 0

φ
′′′
i 0 210

h3
1680

h3
−3990

h3 0 3990

h3
−16800

h3
−210

h3 0

1

h7

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xm−4)7, x ∈ [xm−4, xm−3],
(x − xm−4)7 − 8(x − xm−3)7, x ∈ [xm−3, xm−2],
(x − xm−4)7 − 8(x − xm−3)7+
28(x − xm−2)7, x ∈ [xm−2, xm−1],
(x − xm−4)7 − 8(x − xm−3)7+
28(x − xm−2)7 − 56(x − xm−1)7, x ∈ [xm−1, xm],
(xm+4 − x)7 − 8(xm+3 − x)7+
28(xm+2 − x)7 − 56(xm+1 − x)7, x ∈ [xm, xm+1],
(xm+4 − x)7 − 8(xm+3 − x)7+
28(xm+2 − x)7, x ∈ [xm+1, xm+2],
(xm+4 − x)7 − 8(xm+3 − x)7, x ∈ [xm+2, xm+3],
(xm+4 − x)7, x ∈ [xm+3, xm+4],
0, otherwise,

where the set of splines, {φ−3, φ−2, φ−1, φ0, ..., φN , φN+1,
φN+2, φN+3} forms a basis over the region of solution
a ≤ x ≤ b. This means that the values of the septic B-
spline function φm(x), and all its first, second, and third
derivatives vanish outside the interval [xm−4, xm+4]. One can
easily verify that the values of φm(x) and its derivatives are
as shown in Table 1. Our numerical treatment for solving Eq.
(1) using the collocation method with septic splines is to find
an approximate solution UN (x, t) to the exact solution u(x, t)
in the form:

UN (x, t) =
N+3∑
m=−3

δm(t)φm(x), (7)

where δm(t) are time dependent quantities to be determined
using the boundary conditions:

UN (a, t) = g0(t), UN (b, t) = g1(t), (8)

(Ux)N (a, t) = g2(t), (Ux)N (b, t) = g3(t), (9)

(Uxx)N (a, t) = g4(t), (Uxx)N (b, t) = g5(t). (10)

For every x by using the Taylor expansion in the time di-
rection, using the notation ui = u(x, ti) where ti = ti−1+Δt,
we have the following difference schemes

∂2u(x, ti)
∂2t

=
ui+1 − 2ui + ui−1

(Δt)2
+O((Δt)2), (11)

∂u(x, ti)
∂t

=
ui+1 − ui−1

2Δt
+O((Δt)2), (12)

u(x, ti) =
ui+1 + 2ui + ui−1

4
+O((Δt)2), (13)

∂2uxx(x, ti)
∂2t

=
u

′′
i+1 + u

′′
i−1

2
+O((Δt)2). (14)

Now, let us discretize Eq. (1) according to schemes (11)-(14)
in the following form

ui+1 − 2ui + ui−1
(Δt)2

+ 2α
ui+1 − ui−1

2Δt
+ β2

ui+1 + 2ui + ui−1
4

=
u

′′
i+1 + u

′′
i−1

2
+ f(x, ti). (15)

Rearranging Eq. (15) we have

(1 + αΔt+
β2(Δt)2

4
)ui+1 − (Δt)2

2
u

′′
i+1 = (2 − β2(Δt)2

2
)ui+

(αΔt− 1 − β2(Δt)2

4
)ui−1 +

(Δt)2

2
u

′′
i + (Δt)2f(x, ti), (16)

and the initial conditions are given in Eqs. (2) and (3) as
follows

u(x, 0) = f0(t) = u0, (17)

ut(x, 0) =
u1 − u0

Δt
= f1(x), (18)

u1 = u0 + Δtf1(x). (19)

Substituting Eq. (19) into Eq. (16) then is obtained as follows

i = 1,

(1 + αΔt+
β2(Δt)2

4
)u2 − (Δt)2

2
u

′′
2 = (2 − β2(Δt)2

2
)u1−

(αΔt− 1 − β2(Δt)2

4
)u0 +

(Δt)2

2
u

′′
1 + (Δt)2f(x, t1), (20)

i = 2,

(1 + αΔt+
β2(Δt)2

4
)u3 − (Δt)2

2
u

′′
3 = (2 − β2(Δt)2

2
)u2−

(αΔt− 1 − β2(Δt)2

4
)u1 +

(Δt)2

2
u

′′
2 + (Δt)2f(x, t2), (21)

...

...

...

i = n− 1,

(1 + αΔt+
β2(Δt)2

4
)un − (Δt)2

2
u

′′
n = (2 − β2(Δt)2

2
)un−1−

(αΔt− 1 − β2(Δt)2

4
)un−2 +

(Δt)2

2
u

′′
n−1 + (Δt)2f(x, tn−1). (22)
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TABLE II
RESULTS AT Δt = 0.001 AND Δx = 0.005 IN EXAMPLE 4.1.

t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

L∞ 2.774 × 10−4 7.0782 × 10−4 1.3848 × 10−3 3.0930 × 10−3 1.3424 × 10−2

L2 3.3189 × 10−8 2.3067 × 10−7 8.208 × 10−7 3.237 × 10−6 3.2782 × 10−5

The approximate solution of Eqs. (20)-(22) are sought in the
form of the B-spline functions UN (x, t), it follows that

i = 1,

(1 + αΔt+
β2(Δt)2

4
)(UN )2 − (Δt)2

2
(UN )

′′
2 =

(2 − β2(Δt)2

2
)u1 − (αΔt− 1 − β2(Δt)2

4
)u0+

(Δt)2

2
u

′′
1 + (Δt)2f(x, t1), (23)

i = 2,

(1 + αΔt+
β2(Δt)2

4
)(UN )3 − (Δt)2

2
(UN )

′′
3 =

(2 − β2(Δt)2

2
)u2 − (αΔt− 1 − β2(Δt)2

4
)u1+

(Δt)2

2
u

′′
2 + (Δt)2f(x, t2), (24)

...

...

...

i = n− 1,

(1 + αΔt+
β2(Δt)2

4
)(UN )n − (Δt)2

2
(UN )

′′
n =

(2 − β2(Δt)2

2
)un−1 + (αΔt− 1 − β2(Δt)2

4
)un−2+

(Δt)2

2
u

′′
n−1 + (Δt)2f(x, tn−1), (25)

and boundary conditions (8)-(10) can be written as
N+3∑
m=−3

δm(t)φm(x0) = g0(t), for x = a, t ≥ 0, (26)

N+3∑
m=−3

δm(t)φm(xN ) = g1(t), for x = b, t ≥ 0, (27)

N+3∑
m=−3

δm(t)φ
′
m(x0) = g2(t), for x = a, t ≥ 0, (28)

N+3∑
m=−3

δm(t)φ
′
m(xN ) = g3(t), for x = b, t ≥ 0, (29)

N+3∑
m=−3

δm(t)φ
′′
m(x0) = g4(t), for x = a, t ≥ 0, (30)

N+3∑
m=−3

δm(t)φ
′′
m(xN ) = g5(t), for x = b, t ≥ 0. (31)

The spline solution of Eq. (23) with the boundary conditions
(26)-(31) are obtained by solving to the following matrix
equation. The value of spline functions at the knots {xj}Nj=0
are determined using Table 1. Then the B-spline method in
matrix form can be written as follows:

AX = B, (32)

where X = [δ−3, δ−1, ..., δN , δN+3], while
A ∈ IR(N+7)×(N+7) and B ∈ IR(N+7) are obtained
from left and right hand sides of Eqs. (23) and (26)-(31),
respectively as follows

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 120 1191 2416 1191 120 1 ... 0
4

h
392

h
1715

h
0 −1715

h
−392

h
−7

h
... 0

42

h2
1008

h2
630

h2
−3360

h2
630

h2
1008

h2
42

h2 ... 0
r1 r2 r3 r4 r3 r2 r1 ... 0
...
0 ... r1 r2 r3 r4 r3 r2 r1

0 ... 1 120 1191 2416 1191 120 1

0 ... 4

h
392

h
1715

h
0 −1715

h
−392

h
−7

h
0 ... 42

h2
1008

h2
630

h2
−3360

h2
630

h2
1008

h2
42

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0(t1)
g2(t1)
g4(t1)

(Δt)2f(x0, t1) + (αΔt − 1 − β2
(Δt)2

4
)u0(x0)

+
(Δt)2

2
u
′′
1
(x0) + (2 − β2

(Δt)2

4
)u1(x0 )

...

(Δt)2f(xN , t1) + (αΔt − 1 − β2
(Δt)2

4
)u0(xN )

+
(Δt)2

2
u
′′
1
(xN ) + 2 − β2

(Δt)2

4
)u1(xN )

g1(t1)
g3(t1)
g5(t1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

r1 = (1 + αΔt+
β2(Δt)2

4
) − 21(Δt)2

h2
,

r2 = 120(1 + αΔt+
β2(Δt)2

4
) − 504(Δt)2

h2
,

r3 = 1191(1 + αΔt+
β2(Δt)2

4
) − 315(Δt)2

h2
,

r4 = 2416(1 + αΔt+
β2(Δt)2

4
) +

1680(Δt)2

h2
.

It is easy to see that, the same approximation can be applied
the other Eqs. (24) and (25) together with the corresponding
boundary conditions (26)-(31). We solved n−1 times the sys-
tem (32) by means of a home-made program which is based on
singular value decomposition (SVD) method [18] and in each
step obtain u(x0, ti), u(x1, ti), ..., u(xN , ti) (i = 1, ..., n− 1).
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TABLE III
RESULTS AT Δt = 0.001 AND Δx = 0.01 IN EXAMPLE 4.2.

t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

L∞ 3.2 × 10−3 1.5 × 10−3 6.5137 × 10−4 2.9426 × 10−4 1.4555 × 10−4

L2 2.0865 × 10−7 6.1177 × 10−7 1.3864 × 10−7 4.1007 × 10−8 1.0665 × 10−8

The condition number of A

κs(A) = ‖A‖s‖A−1‖s, s = 1, 2,∞,

depends on α, β, distance of collocation points and Δt.
Therefore a small perturbation in initial data may produce a
large amount of perturbation in the solution. Also the condition
number grows with N for fixed values of α and β. Generally
for a fixed number of collocation points N, smaller values of
α and β produce better approximations, but the matrix A will
be more ill-conditioned.

III. NUMERICAL EXAMPLES

We now obtain the numerical solutions of hyperbolic tele-
graph equation for two problems. The accuracy of the numer-
ical method is measured by computing the difference between
the analytic and numerical solutions at each mesh point, and
use these to compute the L2- and L∞-error norms. We report
the root mean square error L2 and maximum error L∞ errors:

L2 = |U − UN |2 = h
N∑
j=0

|Uj − (UN )j |2,

L∞ = |U − UN |∞ = max
j

|Uj − (UN )j |.

Example 4.1: We consider the hyperbolic telegraph Eq. (1)
with α = 2, β = 1 and f(x, t) = −2α sinh(x) sin(t) + (β2 −
2) sinh(x) cos(t) and 0 ≤ x ≤ 1. The initial conditions are
given by

u(x, 0) = sinh(x),
ut(x, 0) = 0,

and the boundary conditions

u(0, t) = uxx(0, t) = 0,
u(2, t) = uxx(1, t) = cos(t) sinh(1),
ux(0, t) = cos(t),
ux(1, t) = cos(t) cosh(1).

The analytical solution of this example is u(x, t) =
cos(t) sinh(x). The space-time graph of the numerical solution
up to t = 1 is presented in Figure 1. The graph of analytical
and estimated solutions for some different times and x ∈ [0, 1]
is presented in Figure 2. The accuracy of the B-spline method
is measured by using the L2 and L∞ errors. The errors are
reported in Table 2.

Example 4.2: Consider the hyperbolic telegraph Eq. (1)
with α = 4, β = 2, f(x, t) = (3−4α+β2) exp(−2t) sinh(x)
and 0 ≤ x ≤ 1. The initial conditions are given by

u(x, 0) = sinh(x),
ut(x, 0) = −2 sinh(x),

Fig. 1. Three-dimensional plot, with Δt = 0.001 and Δx = 0.005
in Example 4.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

Space(x)

u

Estimated t=0.2
Analytical t=0.2
Estimated t=0.4
Analytical t=0.4
Estimated t=0.6
Analytical t=0.6
Estimated t=0.8
Analytical t=0.8
Estimated t=1
Analytical t=1

Fig. 2. Comparisons between numerical and analytical solutions of
Eq. (1) in t = 0.2s, t = 0.4s, t = 0.6s, t = 0.8s, t = 1s, with
Δt = 0.001 and Δx = 0.005 in Example 4.1.
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Fig. 3. Three-dimensional plot, with Δt = 0.001 and Δx = 0.01 in
Example 4.2.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Space(x)

u

Approximated t=0.4
Analytical t=0.4
Approximated t=0.8
Analytical t=0.8
Approximated t=1.2
Analytical t=1.2
Approximated t=1.6
Analytical t=1.6
Approximated t=2
Analytical t=2

Fig. 4. Comparisons between numerical and analytical solutions of
Eq. (1) in t = 0.2s, t = 0.4s, t = 0.6s, t = 0.8s, t = 1s, with
Δt = 0.001 and Δx = 0.01 in Example 4.2.

and the boundary conditions

u(0, t) = uxx(0, t) = 0,
u(1, t) = uxx(1, t) = exp(−2t) sinh(1),
ux(0, t) = exp(−2t),
ux(1, t) = exp(−2t) cosh(1),

The analytical solution of this example is u(x, t) =
exp(−2t) sinh(x). The root-mean-square error L2 and maxi-
mum error L∞ are presented in Table 3. The space-time graph

of the estimated solution up to t = 1 is shown in Figure 3. The
graph of analytical and estimated solutions for some different
times and x ∈ [0, 1] is presented in Figure 4.

IV. CONCLUSION

In this paper a numerical treatment for telegraph equation is
proposed using a collection method with the septic B-splines.
The numerical solutions are compared with the exact solution
by finding the L2 and L∞ errors. The obtained approximate
numerical solutions maintain good accuracy compared with
the exact solutions. Most importantly, septic B-spline methods
are especially advisable for obtaining numerical solutions of
differential equations when higher continuity of the solutions
exist.
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