Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2167

Search results for: three dimensional primitive equations

2167 Mathematical Modeling of Storm Surge in Three Dimensional Primitive Equations

Authors: Worachat Wannawong, Usa W. HumphriesPrungchan Wongwises, Suphat Vongvisessomjai

Abstract:

The mathematical modeling of storm surge in sea and coastal regions such as the South China Sea (SCS) and the Gulf of Thailand (GoT) are important to study the typhoon characteristics. The storm surge causes an inundation at a lateral boundary exhibiting in the coastal zones particularly in the GoT and some part of the SCS. The model simulations in the three dimensional primitive equations with a high resolution model are important to protect local properties and human life from the typhoon surges. In the present study, the mathematical modeling is used to simulate the typhoon–induced surges in three case studies of Typhoon Linda 1997. The results of model simulations at the tide gauge stations can describe the characteristics of storm surges at the coastal zones.

Keywords: lateral boundary, mathematical modeling, numericalsimulations, three dimensional primitive equations, storm surge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3076
2166 New Application of EHTA for the Generalized(2+1)-Dimensional Nonlinear Evolution Equations

Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi

Abstract:

In this paper, the generalized (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (shortly CBS) equations are investigated. We employ the Hirota-s bilinear method to obtain the bilinear form of CBS equations. Then by the idea of extended homoclinic test approach (shortly EHTA), some exact soliton solutions including breather type solutions are presented.

Keywords: EHTA, (2+1)-dimensional CBS equations, (2+1)-dimensional breaking solution equation, Hirota's bilinear form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
2165 On the Construction of m-Sequences via Primitive Polynomials with a Fast Identification Method

Authors: Abhijit Mitra

Abstract:

The paper provides an in-depth tutorial of mathematical construction of maximal length sequences (m-sequences) via primitive polynomials and how to map the same when implemented in shift registers. It is equally important to check whether a polynomial is primitive or not so as to get proper m-sequences. A fast method to identify primitive polynomials over binary fields is proposed where the complexity is considerably less in comparison with the standard procedures for the same purpose.

Keywords: Finite field, irreducible polynomial, primitive polynomial, maximal length sequence, additive shift register, multiplicative shift register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3665
2164 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly & Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly & Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicate the improvement in the performance of SVM (Poly & Rbf) in comparison to dimensional form of scour.

Keywords: Modeling, pier scour, regression, prediction, SVM (Poly & Rbf kernels).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
2163 Nonlinear Equations with N-dimensional Telegraph Operator Iterated K-times

Authors: Jessada Tariboon

Abstract:

In this article, using distribution kernel, we study the nonlinear equations with n-dimensional telegraph operator iterated k-times.

Keywords: Telegraph operator, Elementary solution, Distribution kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
2162 Toward a New Simple Analytical Formulation of Navier-Stokes Equations

Authors: Gunawan Nugroho, Ahmed M. S. Ali, Zainal A. Abdul Karim

Abstract:

Incompressible Navier-Stokes equations are reviewed in this work. Three-dimensional Navier-Stokes equations are solved analytically. The Mathematical derivation shows that the solutions for the zero and constant pressure gradients are similar. Descriptions of the proposed formulation and validation against two laminar experiments and three different turbulent flow cases are reported in this paper. Even though, the analytical solution is derived for nonreacting flows, it could reproduce trends for cases including combustion.

Keywords: Navier-Stokes Equations, potential function, turbulent flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
2161 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

Authors: Emad K. Jaradat, Ala’a Al-Faqih

Abstract:

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549
2160 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram

Abstract:

A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.

Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
2159 New Exact Solutions for the (3+1)-Dimensional Breaking Soliton Equation

Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi

Abstract:

In this work, we obtain some analytic solutions for the (3+1)-dimensional breaking soliton after obtaining its Hirota-s bilinear form. Our calculations show that, three-wave method is very easy and straightforward to solve nonlinear partial differential equations.

Keywords: (3+1)-dimensional breaking soliton equation, Hirota'sbilinear form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
2158 Comparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations

Authors: Ze-Jun Hu, Ting-Zhu Huang, Ning-Bo Tan

Abstract:

To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we compare the RDF preconditioner with the modified AL (MAL) preconditioner to show which is more effective to solve Navier-Stokes equations. Numerical experiments indicate that the MAL preconditioner is more efficient and robust, especially, for moderate viscosities and stretched grids in steady problems. For unsteady cases, the convergence rate of the RDF preconditioner is slightly faster than the MAL perconditioner in some circumstances, but the parameter of the RDF preconditioner is more sensitive than the MAL preconditioner. Moreover the convergence rate of the MAL preconditioner is still quite acceptable. Therefore we conclude that the MAL preconditioner is more competitive than the RDF preconditioner. These experiments are implemented with IFISS package. 

Keywords: Navier-Stokes equations, Krylov subspace method, preconditioner, dimensional splitting, augmented Lagrangian preconditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
2157 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity

Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif

Abstract:

In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.

Keywords: Thermoelasticity, three-dimensional, Laplace transforms, Fourier transforms, thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
2156 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations

Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir

Abstract:

A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.

Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5622
2155 Numerical Investigation of Two-dimensional Boundary Layer Flow Over a Moving Surface

Authors: Mahmoud Zarrini, R.N. Pralhad

Abstract:

In this chapter, we have studied Variation of velocity in incompressible fluid over a moving surface. The boundary layer equations are on a fixed or continuously moving flat plate in the same or opposite direction to the free stream with suction and injection. The boundary layer equations are transferred from partial differential equations to ordinary differential equations. Numerical solutions are obtained by using Runge-Kutta and Shooting methods. We have found numerical solution to velocity and skin friction coefficient.

Keywords: Boundary layer, continuously moving surface, shooting method, skin friction coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
2154 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid

Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop

Abstract:

In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.

Keywords: Heat Transfer, Nanofluid, Shrinking Surface, Stability Analysis, Three-Dimensional Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
2153 Modeling and Simulating Human Arm Movement Using a 2 Dimensional 3 Segments Coupled Pendulum System

Authors: Loay A. Al-Zu'be, Asma A. Al-Tamimi, Thakir D. Al-Momani, Ayat J. Alkarala, Maryam A. Alzawahreh

Abstract:

A two dimensional three segments coupled pendulum system that mathematically models human arm configuration was developed along with constructing and solving the equations of motions for this model using the energy (work) based approach of Lagrange. The equations of motion of the model were solved iteratively both as an initial value problem and as a two point boundary value problem. In the initial value problem solutions, both the initial system configuration (segment angles) and initial system velocity (segment angular velocities) were used as inputs, whereas, in the two point boundary value problem solutions initial and final configurations and time were used as inputs to solve for the trajectory of motion. The results suggest that the model solutions are sensitive to small changes in the dynamic forces applied to the system as well as to the initial and boundary conditions used. To overcome the system sensitivity a new approach is suggested.

Keywords: Body Configurations, Equations of Motion, Mathematical Modeling, Movement Trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
2152 Flow Characteristics Impeller Change of an Axial Turbo Fan

Authors: Young-Kyun Kim, Tae-Gu Lee, Jin-Huek Hur, Sung-Jae Moon, Jae-Heon Lee

Abstract:

In this paper, three dimensional flow characteristic was presented by a revision of an impeller of an axial turbo fan for improving the airflow rate and the static pressure. TO consider an incompressible steady three-dimensional flow, the RANS equations are used as the governing equations, and the standard k-ε turbulence model is chosen. The pitch angles of 44°, 54°, 59°, and 64° are implemented for the numerical model. The numerical results show that airflow rates of each pitch angle are 1,175 CMH, 1,270 CMH, 1,340 CMH, and 800 CMH, respectively. The difference of the static pressure at impeller inlet and outlet are 120 Pa, 214 Pa, 242 Pa, and 60 Pa according to respective pitch angles. It means that the 59° of the impeller pitch angle is optimal to improve the airflow rate and the static pressure.

Keywords: Axial turbo fan, Impeller, Blade, Pitch angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
2151 Positive Solutions of Initial Value Problem for the Systems of Second Order Integro-Differential Equations in Banach Space

Authors: Lv Yuhua

Abstract:

In this paper, by establishing a new comparison result, we investigate the existence of positive solutions for initial value problems of nonlinear systems of second order integro-differential equations in Banach space.We improve and generalize some results  (see[5,6]), and the results is new even in finite dimensional spaces.

Keywords: Systems of integro-differential equations, monotone iterative method, comparison result, cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
2150 Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis

Authors: Diego Garijo

Abstract:

A numerical approach for solving constant-coefficient differential equations whose solutions exhibit boundary layer structure is built by inserting Bernstein Partition of Unity into Galerkin variational weak form. Due to the reproduction capability of Bernstein basis, such implementation shows excellent accuracy at boundaries and is able to capture sharp gradients of the field variable by p-refinement using regular distributions of equi-spaced evaluation points. The approximation is subjected to convergence experimentation and a procedure to assemble the discrete equations without a background integration mesh is proposed.

Keywords: Bernstein polynomials, Galerkin, differential equation, boundary layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
2149 Three Dimensional Analysis of Sequential Quasi Isotropic Composite Disc for Rotating Machine Application

Authors: Amin Almasi

Abstract:

Composite laminates are relatively weak in out of plane loading, inter-laminar stress, stress concentration near the edge and stress singularities. This paper develops a new analytical formulation for laminated composite rotating disc fabricated from symmetric sequential quasi isotropic layers to predict three dimensional stress and deformation. This analysis is necessary to evaluate mechanical integrity of fiber reinforced multi-layer laminates used for high speed rotating applications such as high speed impellers. Three dimensional governing equations are written for rotating composite disc. Explicit solution is obtained with "Frobenius" expansion series. Based on analytical results, there are two separate zones of three dimensional stress fields in centre and edge of rotating disc. For thin discs, out of plane deformations and stresses are small in comparison with plane ones. For relatively thick discs deformation and stress fields are three dimensional.

Keywords: Composite Disc, Rotating Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
2148 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge- Kutta solution using 38 time steps.

Keywords: Impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
2147 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach

Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam

Abstract:

Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.

Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
2146 The Solution of the Direct Problem of Electrical Prospecting with Direct Current under Conditions of Ground Surface Relief

Authors: Balgaisha Mukanova, Tolkyn Mirgalikyzy

Abstract:

Theory of interpretation of electromagnetic fields studied in the electrical prospecting with direct current is mainly developed for the case of a horizontal surface observation. However in practice we often have to work in difficult terrain surface. Conducting interpretation without the influence of topography can cause non-existent anomalies on sections. This raises the problem of studying the impact of different shapes of ground surface relief on the results of electrical prospecting's research. This research examines the numerical solutions of the direct problem of electrical prospecting for two-dimensional and three-dimensional media, taking into account the terrain. The problem is solved using the method of integral equations. The density of secondary currents on the relief surface is obtained.

Keywords: Ground surface relief, method of integral equations, numerical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
2145 Behavior of Solutions of the System of Recurrence Equations Based on the Verhulst-Pearl Model

Authors: Vladislav N. Dumachev, Vladimir A. Rodin

Abstract:

By utilizing the system of the recurrence equations, containing two parameters, the dynamics of two antagonistically interconnected populations is studied. The following areas of the system behavior are detected: the area of the stable solutions, the area of cyclic solutions occurrence, the area of the accidental change of trajectories of solutions, and the area of chaos and fractal phenomena. The new two-dimensional diagram of the dynamics of the solutions change (the fractal cabbage) has been obtained. In the cross-section of this diagram for one of the equations the well-known Feigenbaum tree of doubling has been noted.Keywordsbifurcation, chaos, dynamics of populations, fractals

Keywords: bifurcation, chaos, dynamics of populations, fractals

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
2144 New Exact Three-Wave Solutions for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System

Authors: Fadi Awawdeh, O. Alsayyed

Abstract:

New exact three-wave solutions including periodic two-solitary solutions and doubly periodic solitary solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov- Veselov (ANNV) system are obtained using Hirota's bilinear form and generalized three-wave type of ansatz approach. It is shown that the generalized three-wave method, with the help of symbolic computation, provides an e¤ective and powerful mathematical tool for solving high dimensional nonlinear evolution equations in mathematical physics.

Keywords: Soliton Solution, Hirota Bilinear Method, ANNV System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
2143 Face Detection using Variance based Haar-Like feature and SVM

Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung

Abstract:

This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.

Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3466
2142 Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption

Authors: Mohd Ariff Admon, Abdul Rahman Mohd Kasim, Sharidan Shafie

Abstract:

This paper considers the effect of heat generation proportional l to (T - T∞ )p , where T is the local temperature and T∞ is the ambient temperature, in unsteady free convection flow near the stagnation point region of a three-dimensional body. The fluid is considered in an ambient fluid under the assumption of a step change in the surface temperature of the body. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using an implicit finite-difference method for different values of the governing parameters entering these equations. The results for the flow and heat characteristics when p ≤ 2 show that the transition from the initial unsteady-state flow to the final steadystate flow takes place smoothly. The behavior of the flow is seen strongly depend on the exponent p.

Keywords: Free convection, Boundary layer flow, Stagnationpoint, Heat generation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
2141 Laplace Adomian Decomposition Method Applied to a Two-Dimensional Viscous Flow with Shrinking Sheet

Authors: M. A. Koroma, S. Widatalla, A. F. Kamara, C. Zhang

Abstract:

Our aim in this piece of work is to demonstrate the power of the Laplace Adomian decomposition method (LADM) in approximating the solutions of nonlinear differential equations governing the two-dimensional viscous flow induced by a shrinking sheet.

Keywords: Adomian polynomials, Laplace Adomian decomposition method, Padé Approximant, Shrinking sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
2140 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.

Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
2139 Global Existence of Periodic Solutions in a Delayed Tri–neuron Network

Authors: Kejun Zhuang, Zhaohui Wen

Abstract:

In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.

Keywords: Delay, global Hopf bifurcation, neural network, periodicsolutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
2138 MEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's

Authors: J. Sulaiman, M. Othman, M. K. Hasan

Abstract:

Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR in solving two-dimensional elliptic partial differential equations by using the second-order finite difference approximation. In fact, the formulation and implementation of three four-point block iterative methods are also presented. Finally, the experimental results show that the Four Point MEGSOR iterative scheme is superior as compared with the existing four point block schemes.

Keywords: MEG iteration, second-order finite difference, weighted parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390