Search results for: Noise Cancelling
659 Statistical Evaluation of Nonlinear Distortion using the Multi-Canonical Monte Carlo Method and the Split Step Fourier Method
Authors: Ioannis Neokosmidis, Nikos Gkekas, Thomas Kamalakis, Thomas Sphicopoulos
Abstract:
In high powered dense wavelength division multiplexed (WDM) systems with low chromatic dispersion, four-wave mixing (FWM) can prove to be a major source of noise. The MultiCanonical Monte Carlo Method (MCMC) and the Split Step Fourier Method (SSFM) are combined to accurately evaluate the probability density function of the decision variable of a receiver, limited by FWM. The combination of the two methods leads to more accurate results, and offers the possibility of adding other optical noises such as the Amplified Spontaneous Emission (ASE) noise.Keywords: Monte Carlo, Nonlinear optics, optical crosstalk, Wavelength-division Multiplexing (WDM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692658 Performance Comparison and Evaluation of AdaBoost and SoftBoost Algorithms on Generic Object Recognition
Authors: Doaa Hegazy, Joachim Denzler
Abstract:
SoftBoost is a recently presented boosting algorithm, which trades off the size of achieved classification margin and generalization performance. This paper presents a performance evaluation of SoftBoost algorithm on the generic object recognition problem. An appearance-based generic object recognition model is used. The evaluation experiments are performed using a difficult object recognition benchmark. An assessment with respect to different degrees of label noise as well as a comparison to the well known AdaBoost algorithm is performed. The obtained results reveal that SoftBoost is encouraged to be used in cases when the training data is known to have a high degree of noise. Otherwise, using Adaboost can achieve better performance.Keywords: SoftBoost algorithm, AdaBoost algorithm, Generic object recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829657 Angle of Arrival Detection with Fifth Order Phase Operators
Authors: Youssef Khmou, Said Safi
Abstract:
In this paper, a fifth order propagator operators are proposed for estimating the Angles Of Arrival (AOA) of narrowband electromagnetic waves impinging on antenna array when its number of sensors is larger than the number of radiating sources.
The array response matrix is partitioned into five linearly dependent phases to construct the noise projector using five different propagators from non diagonal blocks of the spectral matrice of the received data; hence, five different estimators are proposed to estimate the angles of the sources. The simulation results proved the performance of the proposed estimators in the presence of white noise comparatively to high resolution eigen based spectra.
Keywords: DOA, narrowband, antenna, propagator, high resolution. Array, operator, angular, spectrum, goniometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503656 Ensemble Learning with Decision Tree for Remote Sensing Classification
Authors: Mahesh Pal
Abstract:
In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.Keywords: Ensemble learning, decision tree, remote sensingclassification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586655 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering
Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song
Abstract:
The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.
Keywords: Contour filtering, linear array, photoacoustic tomography, universal back projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839654 Effect of Different BER Performance Comparison of MAP and ML Detection
Authors: Naveed Ur Rehman, Rehan Jamil, Irfan Jamil
Abstract:
In this paper, we regard as a coded transmission over a frequency-selective channel. We plan to study analytically the convergence of the turbo-detector using a maximum a posteriori (MAP) equalizer and a MAP decoder. We demonstrate that the densities of the maximum likelihood (ML) exchanged during the iterations are e-symmetric and output-symmetric. Under the Gaussian approximation, this property allows to execute a one-dimensional scrutiny of the turbo-detector. By deriving the analytical terminology of the ML distributions under the Gaussian approximation, we confirm that the bit error rate (BER) performance of the turbo-detector converges to the BER performance of the coded additive white Gaussian noise (AWGN) channel at high signal to noise ratio (SNR), for any frequency selective channel.
Keywords: MAP, ML, SNR, Decoder, BER, Coded transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257653 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade
Authors: T. Y. Liu, C. H Lin., Y. M Ferng
Abstract:
Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyze the flow field and pressure distributions of the wing blades.
Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm.
Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyze the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.
Keywords: Horizontal Axis Wind Turbine, turbulence model, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161652 Tests for Gaussianity of a Stationary Time Series
Authors: Adnan Al-Smadi
Abstract:
One of the primary uses of higher order statistics in signal processing has been for detecting and estimation of non- Gaussian signals in Gaussian noise of unknown covariance. This is motivated by the ability of higher order statistics to suppress additive Gaussian noise. In this paper, several methods to test for non- Gaussianity of a given process are presented. These methods include histogram plot, kurtosis test, and hypothesis testing using cumulants and bispectrum of the available sequence. The hypothesis testing is performed by constructing a statistic to test whether the bispectrum of the given signal is non-zero. A zero bispectrum is not a proof of Gaussianity. Hence, other tests such as the kurtosis test should be employed. Examples are given to demonstrate the performance of the presented methods.Keywords: Non-Gaussian, bispectrum, kurtosis, hypothesistesting, histogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917651 Throughput Analysis over Power Line Communication Channel in an Electric Noisy Scenario
Authors: Edward P. Guillen, Julián J. López, Cesar Y. Barahona
Abstract:
Powerline Communications –PLC– as an alternative method for broadband networking, has the advantage of transmitting over channels already used for electrical distribution or even transmission. But these channels have been not designed with usual wired channels requirements for broadband applications such as stable impedance or known attenuation, and the network have to reject noises caused by electrical appliances that share the same channel. Noise control standards are difficult to complain or simply do not exist on Latin-American environments. This paper analyzes PLC throughput for home connectivity by probing noisy channel scenarios in a PLC network and the statistical results are shown.Keywords: Power Line Communications, OFDM, Noise Analysis, Throughput Analysis, PLC, Home Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309650 Stochastic Resonance in Nonlinear Signal Detection
Authors: Youguo Wang, Lenan Wu
Abstract:
Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.Keywords: Probability of detection error, signal detection, stochastic resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533649 Continuous Feature Adaptation for Non-Native Speech Recognition
Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern
Abstract:
The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217648 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound
Authors: J. Y. Lee, J. Kim, H. J. Chang, J. M. Kim
Abstract:
People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.
Keywords: Resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363647 Steady State Rolling and Dynamic Response of a Tire at Low Frequency
Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa
Abstract:
Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.Keywords: Natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321646 Analysis of FWM Penalties in DWDM Systems Based on G.652, G.653, and G.655 Optical Fibers
Authors: Paula B. Harboe, Edilson da Silva, José R. Souza
Abstract:
This paper presents an investigation of the power penalties imposed by four-wave mixing (FWM) on G.652 (Single- Mode Fiber - SMF), G.653 (Dispersion-Shifted Fiber - DSF), and G.655 (Non-Zero Dispersion-Shifted Fiber - NZDSF) compliant fibers, considering the DWDM grids suggested by the ITU-T Recommendations G.692, and G.694.1, with uniform channel spacing of 100, 50, 25, and 12.5 GHz. The mathematical/numerical model assumes undepleted pumping, and shows very clearly the deleterious effect of FWM on the performance of DWDM systems, measured by the signal-to-noise ratio (SNR). The results make it evident that non-uniform channel spacing is practically mandatory for WDM systems based on DSF fibers.Keywords: DWDM systems, Four-Wave Mixing (FWM), G.652, G.653, G.655 compliant fibers, Signal-to-noise ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3081645 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — In the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to real-world data
Keywords: Rule induction, decision table, missing data, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464644 Restoration of Noisy Document Images with an Efficient Bi-Level Adaptive Thresholding
Authors: Abhijit Mitra
Abstract:
An effective approach for extracting document images from a noisy background is introduced. The entire scheme is divided into three sub- stechniques – the initial preprocessing operations for noise cluster tightening, introduction of a new thresholding method by maximizing the ratio of stan- dard deviations of the combined effect on the image to the sum of weighted classes and finally the image restoration phase by image binarization utiliz- ing the proposed optimum threshold level. The proposed method is found to be efficient compared to the existing schemes in terms of computational complexity as well as speed with better noise rejection.
Keywords: Document image extraction, Preprocessing, Ratio of stan-dard deviations, Bi-level adaptive thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457643 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification
Authors: Essam Al-Daoud
Abstract:
Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020642 Single Input ANC for Suppression of Breath Sound
Authors: Yunjung Lee, Pil Un Kim, Gyhyoun Lee, Jin Ho Cho, Myoung Nam Kim
Abstract:
Various sounds generated in the chest are included in auscultation sound. Adaptive Noise Canceller (ANC) is one of the useful techniques for biomedical signal. But the ANC is not suitable for auscultation sound. Because the ANC needs two input channels as a primary signal and a reference signals, but a stethoscope can provide just one input sound. Therefore, in this paper, it was proposed the Single Input ANC (SIANC) for suppression of breath sound in a cardiac auscultation sound. For the SIANC, it was proposed that the reference generation system which included Heart Sound Detector, Control and Reference Generator. By experiment and comparison, it was confirmed that the proposed SIANC was efficient for heart sound enhancement and it was independent of variations of a heartbeat.Keywords: Adaptive noise canceller, Auscultation, Breath soundsuppression, Signal enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465641 Web Log Mining by an Improved AprioriAll Algorithm
Authors: Wang Tong, He Pi-lian
Abstract:
This paper sets forth the possibility and importance about applying Data Mining in Web logs mining and shows some problems in the conventional searching engines. Then it offers an improved algorithm based on the original AprioriAll algorithm which has been used in Web logs mining widely. The new algorithm adds the property of the User ID during the every step of producing the candidate set and every step of scanning the database by which to decide whether an item in the candidate set should be put into the large set which will be used to produce next candidate set. At the meantime, in order to reduce the number of the database scanning, the new algorithm, by using the property of the Apriori algorithm, limits the size of the candidate set in time whenever it is produced. Test results show the improved algorithm has a more lower complexity of time and space, better restrain noise and fit the capacity of memory.
Keywords: Candidate Sets Pruning, Data Mining, ImprovedAlgorithm, Noise Restrain, Web Log
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281640 Speech Enhancement by Marginal Statistical Characterization in the Log Gabor Wavelet Domain
Authors: Suman Senapati, Goutam Saha
Abstract:
This work presents a fusion of Log Gabor Wavelet (LGW) and Maximum a Posteriori (MAP) estimator as a speech enhancement tool for acoustical background noise reduction. The probability density function (pdf) of the speech spectral amplitude is approximated by a Generalized Laplacian Distribution (GLD). Compared to earlier estimators the proposed method estimates the underlying statistical model more accurately by appropriately choosing the model parameters of GLD. Experimental results show that the proposed estimator yields a higher improvement in Segmental Signal-to-Noise Ratio (S-SNR) and lower Log-Spectral Distortion (LSD) in two different noisy environments compared to other estimators.Keywords: Speech Enhancement, Generalized Laplacian Distribution, Log Gabor Wavelet, Bayesian MAP Marginal Estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629639 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction
Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto
Abstract:
Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.
Keywords: Mechanical measurement, nanomaterials, optical coating, thermal noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831638 Robust Ellipse Detection by Fitting Randomly Selected Edge Patches
Authors: Watcharin Kaewapichai, Pakorn Kaewtrakulpong
Abstract:
In this paper, a method to detect multiple ellipses is presented. The technique is efficient and robust against incomplete ellipses due to partial occlusion, noise or missing edges and outliers. It is an iterative technique that finds and removes the best ellipse until no reasonable ellipse is found. At each run, the best ellipse is extracted from randomly selected edge patches, its fitness calculated and compared to a fitness threshold. RANSAC algorithm is applied as a sampling process together with the Direct Least Square fitting of ellipses (DLS) as the fitting algorithm. In our experiment, the method performs very well and is robust against noise and spurious edges on both synthetic and real-world image data.
Keywords: Direct Least Square Fitting, Ellipse Detection, RANSAC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228637 Evaluation of Clustering Based on Preprocessing in Gene Expression Data
Authors: Seo Young Kim, Toshimitsu Hamasaki
Abstract:
Microarrays have become the effective, broadly used tools in biological and medical research to address a wide range of problems, including classification of disease subtypes and tumors. Many statistical methods are available for analyzing and systematizing these complex data into meaningful information, and one of the main goals in analyzing gene expression data is the detection of samples or genes with similar expression patterns. In this paper, we express and compare the performance of several clustering methods based on data preprocessing including strategies of normalization or noise clearness. We also evaluate each of these clustering methods with validation measures for both simulated data and real gene expression data. Consequently, clustering methods which are common used in microarray data analysis are affected by normalization and degree of noise and clearness for datasets.
Keywords: Gene expression, clustering, data preprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740636 Performance Comparison and Analysis of Serial Concatenated Convolutional Codes
Authors: Dongwon Lee, Eon Kyeong Joo
Abstract:
In this paper, the performance of three types of serial concatenated convolutional codes (SCCC) is compared and analyzed in additive white Gaussian noise (AWGN) channel. In Type I, only the parity bits of outer encoder are passed to inner encoder. In Type II and Type III, both the information bits and the parity bits of outer encoder are transferred to inner encoder. As results of simulation, Type I shows the best bit error rate (BER) performance at low signal-to-noise ratio (SNR). On the other hand, Type III shows the best BER performance at high SNR in AWGN channel. The simulation results are analyzed using the distance spectrum.Keywords: Distance spectrum, MAP algorithm, SCCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756635 On SNR Estimation by the Likelihood of near Pitch for Speech Detection
Authors: Young-Hwan Song, Doo-Heon Kyun, Jong-Kuk Kim, Myung-Jin Bae
Abstract:
People have the habitual pitch level which is used when people say something generally. However this pitch should be changed irregularly in the presence of noise. So it is useful to estimate SNR of speech signal by pitch. In this paper, we obtain the energy of input speech signal and then we detect a stationary region on voiced speech. And we get the pitch period by NAMDF for the stationary region that is not varied pitch rapidly. After getting pitch, each frame is divided by pitch period and the likelihood of closed pitch is estimated. In this paper, we proposed new parameter, NLF, to estimate the SNR of received speech signal. The NLF is derived from the correlation of near pitch periods. The NLF is obtained for each stationary region in voiced speech. Finally we confirmed good performance of the estimation of the SNR of received input speech in the presence of noise.
Keywords: Likelihood, pitch, SNR, speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575634 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications
Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar
Abstract:
The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.
Keywords: Supersonic nozzle, Chevron, Acoustic level, Shape Optimization of Chevron Nozzles, Jet noise suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3821633 Blind Source Separation Using Modified Gaussian FastICA
Authors: V. K. Ananthashayana, Jyothirmayi M.
Abstract:
This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation.Keywords: Amari error, Blind Source Separation, Contrast function, Gaussian function, Independent Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744632 Particle Filter Applied to Noisy Synchronization in Polynomial Chaotic Maps
Authors: Moussa Yahia, Pascal Acco, Malek Benslama
Abstract:
Polynomial maps offer analytical properties used to obtain better performances in the scope of chaos synchronization under noisy channels. This paper presents a new method to simplify equations of the Exact Polynomial Kalman Filter (ExPKF) given in [1]. This faster algorithm is compared to other estimators showing that performances of all considered observers vanish rapidly with the channel noise making application of chaos synchronization intractable. Simulation of ExPKF shows that saturation drawn on the emitter to keep it stable impacts badly performances for low channel noise. Then we propose a particle filter that outperforms all other Kalman structured observers in the case of noisy channels.
Keywords: Chaos synchronization, Saturation, Fast ExPKF, Particlefilter, Polynomial maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242631 Wavelet-Based ECG Signal Analysis and Classification
Authors: Madina Hamiane, May Hashim Ali
Abstract:
This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm. The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.
Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274630 Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising
Authors: Hamid A. Jalab, Rabha W. Ibrahim
Abstract:
This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.
Keywords: Fractional calculus, fractional differential operator, fractional mask, fractional filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3004