
 

 

 
Abstract—One of the primary uses of higher order statistics in 

signal processing has been for detecting and estimation of non-
Gaussian signals in Gaussian noise of unknown covariance. This is 
motivated by the ability of higher order statistics to suppress additive 
Gaussian noise. In this paper, several methods to test for non-
Gaussianity of a given process are presented. These methods include 
histogram plot, kurtosis test, and hypothesis testing using cumulants 
and bispectrum of the available sequence. The hypothesis testing is 
performed by constructing a statistic to test whether the bispectrum 
of the given signal is non-zero. A zero bispectrum is not a proof of 
Gaussianity. Hence, other tests such as the kurtosis test should be 
employed. Examples are given to demonstrate the performance of the 
presented methods. 
 

Keywords—Non-Gaussian, bispectrum, kurtosis, hypothesis 
testing, histogram.  

I. INTRODUCTION 
NDOUBTEDLY, the most widely used model for the 
distribution of a random variable is the Gaussian 

distribution. That is because it is simple, tractable, and fairly 
realistic model; i.e., the Gaussian process has many properties 
that make analytic results possible. It also describes several 
types of physical phenomena that are usually confirmed by 
experiments. Furthermore, the central limit theorem provides 
the mathematical justification for using the Gaussian 
distribution as a model for a large number of different 
physical phenomena in which the observed random variable is 
the result of a large number of individual random processes 
[1]. These reasons make the Gaussian process very 
fundamental and important in engineering and science 
problems. 

A random process is Gaussian if every finite set of {y(n)} is 
a Gaussian (Normal) random vector. Normal probabilistic 
distribution in many cases describes what normally happens, 
especially when sums of large numbers of random variables 
are involved. Gaussian entities are the foundation of basic 
stochastic signal processing. The slope of the Gaussian is the 
proverbial bell curve.  
   The Gaussian random process is known as a second order 
process because its probability density function (PDF) and 
therefore all its statistical properties are completely 
determined by the first and second moments; that is, by the 
mean and the variance which are the sole parameters of the 
process. Hence, the information contained in the power  
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spectrum is essentially that which is present in the 
autocorrelation sequence. The first1 and second order statistics 
are popular signal processing tools. These tools have been 
used extensively for the analysis of process data. It is a well-
known fact that second order statistics are phase-blind; that is, 
they are able to describe minimum-phase systems only. 
   The second order measures work fine if the signal has a 
Gaussian PDF. The information contained in the second order 
statistics (SOS), or autocorrelation, suffices for the statistical 
description of Gaussian process. However, many real-life 
signals are non-Gaussian. For example, the electromagnetic 
environment encountered by receiver systems is often non-
Gaussian in nature. However, the receiving systems are 
designed to perform in white Gaussian noise [2]. Also, 
acoustic noise is in many cases highly non-Gaussian. In 
addition, biological signals typified by electroencephalograms 
(EEG) or electromyograms (EMG) are non-Gaussian [13].  
Hence, in practice, there are situations where we must look 
beyond the autocorrelation of the available data to suppress 
additive noise, extract phase information, or obtain 
information regarding deviations from Gaussianness. This 
necessitates the use of higher order statistics (HOS) tools. 
HOS techniques were first proposed over four decades ago [3, 
4]. 
    While the Gaussian random process still plays a great and 
significant role in stochastic signal processing, non-Gaussian 
random processes and HOS, or cumulants, are of increasing 
importance to the researchers. Higher order (≥3) cumulants of 
non-Gaussian measurements contain not only the amplitude 
but also phase information of the unknown system. 
Furthermore, they are insensitive to Gaussian noise since all 
higher order (≥3) cumulants of Gaussian random processes are 
equal to zero. HOS measures are extensions of second order 
measures to higher orders; i.e., extension of autocorrelation 
for multiple lags. Applications of HOS have been found in 
diverse of fields such as speech, seismic data processing, 
plasma physics, optics, and economics [5]. As the field of 
HOS progresses, more accurate and sophisticated algorithms 
and techniques are revealed. In fact, the use of HOS may well 
be one of the new frontiers in signal processing, 
communications, statistical data analysis, and many other 
related fields. 
   The study of detection and estimation in non-Gaussian 
process is important for many applications. Examples include 
radars which must operate in high clutter environments and 
sonar systems operating in the presence of high reverberation 
[14].  
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   In this paper, several types of tests are applied to the given 
sequence such as histogram plot, kurtosis test, and hypothesis 
testing using cumulants and bispectrum of the available 
sequence. The basic idea for hypothesis testing for non-
Gaussianity test is as follows. If the third order cumulant of a 
process is zero, then its bispectrum is zero. If the bispectrum is 
not zero, then the process is non-Gaussian. The paper is 
organized as follows. Section 2 contains the problem 
formulation for detection and estimation of non-Gaussian 
signals. Several examples are presented in Section 3. Finally, 
concluding remarks are presented in Section 4. 

II. PROBLEM FORMULATION 
   Consider the real autoregressive moving average (ARMA) 
stable process y(k) described by the linear difference equation 

             ∑ ∑
= =

−=−
p

i

q

i
ii ikxbikya

0 0

)()(                           (1) 

where {x(k)} is the driving process, assumed to be white with 
zero mean and variance 2

xσ , and k denotes the iteration. The 
transfer function of the process is then 
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The coefficients {ai} and {bi} are referred to as autoregressive 
(AR) and moving average (MA) parameters respectively, with 
a0 = 1 and b0 = 1. Furthermore, θ = [aT  bT]T  represents the 
parameter vector of ARMA coefficients, where a = [a0 a1 … 
ap]T  and b = [b0  b1  … bq]T. The observed output data is 
represented by y(k). The integers p and q are known as the 
model order. 
Typically, the time series y(k) is observed in additive noise, 
d(k). That is 

                   y0(k) = y(k) + d(k)                                           (3) 
The power spectrum is the frequency domain representation 

of the second order moment. It represents the decomposition 
or spread of the signal energy over the frequency channels 
obtained from the Fourier transform. 

The kth-order cumulant of y(k) is defined as the joint kth-
order cumulant of the random variable y(k), y(k+ 1τ ), …, 

y(k+ 1−nτ ) [3]. That is, 

Rky( 1τ , 2τ , … 1−nτ ) = cum{y(k), y(k+ 1τ ), …, y(k+ 1−nτ )}(4)   

which depends on the time difference 1τ , 2τ , … 1−nτ . The 
first order cumulant is the mean value while the second order 
cumulant is the covariance sequence. The third order cumulant 
of y(k) is defined as [6]. 

         R3y( 1τ , 2τ ) = E[y(k)y(k+ 1τ )y(k+ 2τ )]                      (5) 
   

In practice, there is only a sample sequence of the data 
available. Cumulants involve expectations and can not be 
computed in an exact manner from real data. Hence, as in case 
of correlation, they must be approximated. Therefore, we 
replace the true cumulants by their sample averages. We 
compute the sample estimate of R3y( 1τ , 2τ ) as follows. 

    R3y( 1τ , 2τ ) = ∑
∈
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where NR is the number of samples in region R. The kth-order 
cumulant spectra ),,( 11 −Φ n

y
n ww L of y(k) is defined as the 

(n-1) dimensional Fourier transform of the nth-order cumulant 
sequence [7] 
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   A particular case of higher order spectra is the third-order 
spectrum which is known as bispectrum. The bispectrum is 
defined either as the two-dimensional Fourier transform of the 
third order cumulant sequence or as the mathematical 
expectation of the triple product of the Fourier coefficients 
[15]. That is  
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Or [8] 
         ),( 212 wwyΦ = E{Y(w1) Y(w2) Y*(w1+w2)} 

                                 = µ3H(w1) H(w2) H*(w1+ w2)              (9)                   
where πππ ≤+≤≤ 2121 ,, wwww , Y(w) is the Fourier 

transform of the series y(k), µ3 is the third order moment of 
the input, and '*' denotes the complex conjugate. 
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The pair ),( 21 ww is the bispectrum in the bifrerquency (w1+ 

w2). Therefore, if µ3 ≠ 0, then ),( 212 wwyΦ ≠ 0. 
   Next, several types of tests will be applied to the given 
sequence. These tests include hypothesis testing using 
cumulants and bispectrum, the kurtosis test, and the histogram 
plot of the desired sequence.  
 

A. Hypothesis Testing 
Many problems in engineering and science require that we 

decide whether to accept or reject a statement about some 
parameters. Assumptions, statements, or guesses about some 
parameters that may or may not be true are known as 
hypotheses [9]. The objective is to make decisions about these 
statements. The procedures and techniques leading to a 
decision about a particular hypothesis are referred to as 
hypothesis testing. Hypothesis testing is a statistical decision 
making technique. These techniques rely on using the 
information in a random sample from the population of 
interest. If this information is consistent with the hypothesis, 
then the decision will be that the hypothesis is true. On the 
other hand, if this information is inconsistent with the 
hypothesis, then the decision will be that the hypothesis is 
false. It must be emphasized that the truth of falsity of a 
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particular hypothesis can never be known with certainty. 
Hypothesis testing can be two-sided alternative or one-sided 
hypothesis. In either case, two statements are claimed: 

0Ψ and 1Ψ . The value 0Ψ  is referred to as the null 

hypothesis, while 1Ψ  is referred to as the alternative 
hypothesis. The decision will be either reject or fail to reject 
the null hypothesis 0Ψ .  

In this paper, the basic idea for hypothesis testing for non-
Gaussianity test is as follows. If the third order cumulant of a 
process is zero, then its bispectrum is zero. If the bispectrum is 
not zero, then the process is non-Gaussian. Thus, we have a 
hypothesis-testing problem for non-Gaussianity. That is we 
wish to test, 

          0Ψ : the bispectrum of the sequence is zero. 

        1Ψ : the bispectrum of the sequence is nonzero.       (11)                                       

A rejection of the null hypothesis implies a rejection of the 
hypothesis that the signal is Gaussian. It should be pointed out 
that a zero bispectrum is not proof of Gaussianity. That is 
because if a random process is symmetrically distributed, its 
third order cumulant is zero. For example, Uniform and 
Gaussian distributions are symmetric, whereas Exponential 
distribution is nonsymmetrical. Hence, other tools become 
necessary to utilize the process. Histogram plot and the 
kurtosis test are some of these important tools 

. 

B. Histogram  
Histogram is widely used as a simple, but informative, 

method of data display. It provides a visual impression of the 
shape of the distribution of the measurements, as well as 
information about the scatter or dispersion of the data [10]. 
The histogram does not have the individual observations. It 
describes the number of times the estimator produces a given 
range of values. Hence, a histogram is an approximation to the 
PDF. Therefore, the histogram can be used as aids to selecting 
probabilistic model; i.e., Gaussian or non-Gaussian. 

 

C. Kurtosis 
    The kurtosis is an important property of the density 
function. It measures the degree of peakedness or flatness of a 
distribution. The narrower the distribution, the larger the 
kurtosis becomes. If a distribution has a positive kurtosis, then 
it is referred to as leptokurtic. If it has a negative kurtosis, it is 
referred to as platykurtic. If the kurtosis is 0, then the 
distribution is referred to as mesokurtic [11] and is a normal 
distribution. The kurtosis is formally given by [12] 
 

            22

4

}]{[
}{)(
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y
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σ

 -3           (12)                                    

where [.]2 means taking the square of each element of the 
vector [.]. Table I shows the kurtosis for a number of common 
distributions. 
 

TABLE I 
THE KURTOSIS FOR SOME COMMON DISTRIBUTIONS 

Distribution Kurtosis 
Exponential 6 

Gaussian 0 
Laplace 3 
Uniform 

5
6

−  

 

III. SIMULATION EXAMPLES  
The purpose of the following examples is to demonstrate 

the performance of several techniques used in diagnosing 
whether a given signal is Gaussian or not. The first step in 
doing so is to compute the third order cumulants. Then, the 
bispectrum is calculated. If the bispectrum is non-zero, then 
the signal is non-Gaussian. However, if the bispectrum is zero, 
then the signal could be Gaussian but not necessarily true. To 
find out if the signal is Gaussian or not, we apply the kurtosis 
test and we display the histogram of the given data sequence. 
 
Example 1: The time series to be considered is given by 
 
       y(k) + 0.39y(k-1) + 0.3y(k-2) = x(k) - 0.9x(k-1)         (13)                     

This is an ARMA model. The modeling data were generated 
by exciting this system with zero-mean exponential 
distribution. In system identification problems, the input 
sequence is unknown in some cases. Hence, it becomes 
necessary to estimate the input data. The method in [5] was 
used to obtain an estimate of the input data. Now, we are 
going to test the estimated input signal for Gaussianity. The 
cumulant of the sequence was calculated. The highest value of 
the cumulants was 288.412 on the average of 100 runs 
different seeds.  Fig. 1 displays the cumulants. Then the 
bispectrum was computed. Fig. 2 displays the bispectrum of 
the data. Fig. 3 shows the histogram for the estimated signal. 
The histogram, the kurtosis, and the hypothesis testing 
approaches were applied. The kurtosis was calculated 100 
times using different seeds. The kurtosis was about 5.632 on 
the average. The results of the three measures indeed show 
that the excitation is non-Gaussian. 
 
Example 2: The same example was considered. However, the 
modeling data were generated by exciting the system with a 
Gaussian distribution. The same procedure was taken to detect 
whether the signal was Gaussian or non-Gaussian. The 
cumulant of the sequence was calculated. The highest value of 
the cumulants was 4.941 on the average of 100 runs different 
seeds. The cumulants are displayed in Fig. 4. The bispectrum 
is shown in Fig. 5. Since the cumulants are approximately 
zeros, the kurtosis was obtained and the histogram was 
plotted. The kurtosis was calculated 100 times using different 
seeds. The kurtosis was about 0.0004 on the average. The 
histogram is displayed in Fig. 6. The results of the three 
measures indeed show that the excitation is Gaussian. 
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Example 3: The model is the same as in Example 1; i.e, the 
exciting signal is a zero-mean, exponentially distributed. 
However, the output of the filter was corrupted with colored 
additive Gaussian noise at the same SNR on the output 
sequence. The colored Gaussian noise d(k) was obtained by 
passing a zero-mean random white Gaussian distribution 
through the following sinc function. 
                     h(k) = 0.3sinc(0.01k)        -5≤ k≤ 5           (14)                               

Again, we estimated the input signal and tested it for 
Gaussianity. The cumulant of the sequence was calculated. 
The highest value of the cumulants was 4.846 on the average 
of 100 runs different seeds. The cumulants are displayed in 
Fig. 7. The bispectrum is shown in Fig. 8.  The kurtosis was 
about 5.6424 on the average. Fig. 9 displays the histogram of 
the data. The results of the three measures indeed show that 
the excitation is non-Gaussian. 

IV.  CONCLUSION 
We have considered estimation and detection of Gaussian 

signals in non-Gaussian processes of unknown PDF. Several 
methods to test for Gaussianity of a time series have been 
presented. Namely, hypothesis testing using HOS cumulants, 
kurtosis test, and histogram plot are used. We have exploited 
the fact that cumulants of non-Gaussian processes may be 
estimated in the presence of additive Gaussian signals of 
unknown covariance. It should be pointed out that a zero 
bispectrum is not proof of Gaussianity. While the histogram 
provides a visual impression of the shape of the distribution of 
the measurements, the kurtosis measures the degree of 
peakedness or flatness of a distribution. Simulation examples 
were presented to demonstrate the performance of these 
methods. 
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Fig. 1 Cumulants for the signal in Example 1 
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Fig. 2 Bispectrum for the signal in Example 1 
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Fig. 3 Histogram for the signal in Example 1 
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Fig. 4 Cumulants for the signal in Example 2 

 

 
Fig. 5 Bispectrum for the signal in Example 2 
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Fig. 6 Histogram for the signal in Example 2 
 

 
Fig. 7 Cumulants for the signal in Example 3 

 
Fig. 8 Bispectrum for the signal in Example 3 
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Fig. 9 Histogram for the signal in Example 3
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