
 

 

  
Abstract—In this paper, a fifth order propagator operators are 

proposed for estimating the Angles Of Arrival (AOA) of narrowband 
electromagnetic waves impinging on antenna array when its number 
of sensors is larger than the number of radiating sources. 

The array response matrix is partitioned into five linearly 
dependent phases to construct the noise projector using five different 
propagators from non diagonal blocks of the spectral matrice of the 
received data; hence, five different estimators are proposed to 
estimate the angles of the sources. The simulation results proved the 
performance of the proposed estimators in the presence of white 
noise comparatively to high resolution eigen based spectra. 
 

Keywords—DOA, narrowband, antenna, propagator, high 
resolution. Array, operator, angular, spectrum, goniometry. 

I. INTRODUCTION 

ETREIVING the information from the received signals 
by an antenna is very useful in many engineering fields, 

indeed estimating the Direction Of Arrival (DOA) of 
narrowband radiating sources has many applications [1] 
including synthetic aperture Radar, geo-location systems, 
submarine acoustic and chemical sensor array. 

Most of the DOA estimators rely on second order statistics 
of the received data; they are divided into parametric and non 
parametric methods. The beam forming techniques [1] have 
the advantage of light computational load with possibility to 
estimate the powers of the received signals but provide a low 
resolution that depends on the geometry of the array. The 
subspace based techniques [2], [3] require the eigen 
decomposition or the singular value decomposition of the 
cross correlation matrix of the received signals to construct 
two orthogonal sets which are the signal and noise subspaces, 
after the estimation of the noise subspace, the angular 
spectrum is obtained by testing the angles in the range that is 
dependent on the geometry of the array, when the tested angle 
is DOA the spectrum represents a peak. 

In some cases, it is required to use a large number of 
sensors to estimate the characteristics of the radiating sources, 
using the subspace based techniques is computationally 
expensive especially when the equipment used does not 
possess sufficient Random Access Memory (RAM). To get 
faster solutions, the Propagator operator [4], [5], [10] is 
proposed, to avoid the eigen decomposition, which exploits 
the linear dependence between the rows of the array matrix 
such that the noise subspace can be estimated with lower 
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computational complexity. A new versions of the propagator 
were proposed [6], [7], using partial cross correlation sub-
matrices, which are effective even in the presence of spatially 
and temporally non uniform noise. 

Most of the DOA estimators require that the number of the 
sensors must be strictly superior to the number of emitters, but 
this condition can be surpassed using KHATRI RAO subspace 
[9] when the signals of the sources are quasi stationary which 
permits the construction of an augmented cross correlation 
matrix. However in some applications the number of the 
receivers can be much greater than the number of sources, 
which is the case in submarine acoustic [8], radiolocation [7] 
and also the new conception of antennas consisting of 
hundreds of cellular sensors. 

In this paper, we introduce the fifth order propagator, a 
linear operator that can efficiently constructs the noise 
subspace of the narrowband model when the number of 
sensors is superior to four times the number of sources. 

II. STATISTICAL DATA MODEL 
We consider a Uniform Linear Array (ULA) consisting of 

N identical sensors, the narrowband wave field created by P 
sources, located at distinct azimuth angles, is received by the 
antenna with N >> P. The property of isotropic medium 
allows us to express the received signals at the instant  by the 
following equation: 

 
∑    (1) 

 
The discrete time index 1,2, … ,  with  is the number 

of acquired samples and    is the random matrix 
of the received signals, , , … ,  
   is the array steering matrix, , …  is 
the matrix of the sources waveforms. 

   is the additive noise of the antenna sensors 
that is modeled by stationary and ergodic zero mean complex 
valued random process, whose joint probability density 
function is given by : 

 

                  
| | / exp                   (2) 

 
where   is the noise correlation matrix and .  
denotes the conjugate transpose operator with  being the 
identity matrix. The Vandermonde steering vector is defined 
by: 
 

1, , … ,   
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with the path difference 2 sin  where 
,   is the  Direction Of Arrival (DOA), /  is the 

wavelength of the narrowband sources, c is the speed of 
electromagnetic wave and  is the carrier frequency. d is the 
inter-element distance of the antenna and . denotes the 
matrix transposition. 

The spectral matrix  can be computed in the time or 
frequency domain as follows: 

 
                            (3) 

 
.  denotes the expectation operator, the matrix 

 is the   complex covariance of the sources 
waveforms. 

The subspace based techniques split the matrix  into two 
orthogonal sets called signal and noise subspaces ,  
characterized by the property: 

 
                                                           (4) 
 
In the next section we introduce a new DOA estimator 

which exploits all elements of the antenna by using small 
blocks of the matrix  to construct the set . 

III. PROPOSED OPERATORS 
If the number of sensors is superior to four time the number 

of sensors , we can divide the array into five non 
overlapping subarrays given that the radiating sources are 
statistically independent such that  can be written as 

, , … ,  or at least  is invertible with  
denotes the signal power of the  source. Based on these 
assumptions, we can derive the fifth order propagator as 
follows: We take the first element of the array as the phase 
reference of the incoming signals, the steering matrix is given 
by: 

 
1 1 … 1

…
… … … …

…

         (5) 

 
where  has the properties  , 

° 1 . The following partitioning is generated: 
 
                        , , , ,                         (6) 

 
where  for 1, . . . ,4 and   . From 
(5) we realize that any sub matrix  is linearly dependent to 

, hence there exist an ensemble Ω given by : 
 

Ω П  CP P CN P P CN P P CP P  
П , , 1, . . ,5  

 
Next, we search for a combination of operators П  to 

construct the null space of the steering matrix . For this 

purpose, П  can be extracted from the cross correlation matrix 
 such that for any indexes , , the block   is given by: 

 

          , ∑                (7) 
 
with the condition  to eliminate the affected blocks by the 
perturbation noise  as illustrated in the following matrix : 
 

… …
… …

… … … … …
… … … … …

… … …

 

 
Any phase  can be expressed as a function of  with the 
following indicial product: 
 
           П     (8) 

 
The equation is valid for any , , after the 

construction of the ensemble Ω, we can calculate the fifth 
order propagator  that approximate the  null space of   
based on any partition in (6). Per example we take  to be the 
base of equations, we have: 

 
          П П П П                  (9) 

 
It follows that the propagator operator  is computed by: 

 
 П |П | 4IP| П |П  0       (10) 

 
Similarly to the remaining phases , we compute the five 

different operators that can be concatenated in single matrix 
 as follows : 

 

            

П П П П
П … … …
П … … …
П … … …
П … … …

                 (11) 

 
where 4 , the operators  have the same resolution 
capability. In the absence of the perturbation (i.e 
 ) we write the following equations: 
 

                        ,                              (12) 
 

 0                                   (13) 
 
                                    0                                  (14) 

 
The eigenvalues and singular values of  have a 

complementary property compared to that of the spectral 
matrix , theirs spectra are given by : 
 

0            (15) 
 

0 | | | |       (16) 
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From (11) and (16) we deduce that: 
 
                                                               (17) 
 
                                4                                 (18) 
 

The angular spectrum for the  operator is given by the 
following metric: 

 

                                               (19) 

 
In the next section we give some simulation results to 

evaluate the performance of the proposed operators. 

IV. SIMULATION RESULTS 
We consider an array consisting of N=18 identical and 

isotropic sensors, P=3 non coherent narrowband sources are 
impinging on the array with the same power of unity. The 
number of samples is set to K=200. The carrier frequency is 

1  and the sensors are equally spaced with a distance 
of half the wavelength d=15cm with Rayleigh limit angular 
resolution of 6.74°. The signals of the sources are 
assumed to be complex ergodic random processes. In the first 
experiment we set 5 , Fig. 1 represents an average 
of 100 Monte Carlo runs of the five operators . 

 

 
Fig. 1 Proposed operators with N 18, P 3,  

θ    10°, 28°, 49° , d λ/2, K 200 and SNR 5dB 
 
We realize that all operators have the same behavior with 

no side lobes which make the physical interpretation easy. To 
compare the proposed operators with some high resolution 
spectral techniques, we evaluate the operator  with 
Schmidt subspace based technique [2] and standard Beam 
forming, the results of 100 Monte Carlo runs are 
presented in the Fig. 2. 

The operator   and Music are equivalent in these 
conditions. In the last experiment we compare the Root Mean 
Square Error of the operators  with high resolution 
ESPRIT Technique [3] (Estimation Of Signal Parameters Via 
Rotational Invariance Techniques) the result, of 100 

Monte Carlo for every value of SNR, is presented in Fig. 3. 
We conclude in this experiment that the operators 

( ,  are better performing than the three other functions 
and when the SNR is about 20dB they are equivalent to 
ESPRIT. 

 

 
Fig. 2 Spectra Ψ , MUSIC and Beamforming with N 18, P

3, θ 10°, 28°, 49° , d λ/2, K 200 and SNR 5dB 
 

 
Fig. 3 RMSE against SNR=[0dB,20dB] over 100 Monte Carlo 

runs with N 18, P 3, θ 10°, 28°, 49° , d λ/2 and  K 200 
 
If the source waveforms are correlated, then forward 

backward averaging techniques are necessary for the proposed 
estimators to efficiently resolve the angles. In the other hand, 
the only drawback of the proposed approach is that the 
number of sources must be known; therefore we need to 
elaborate non eigen-based spectral estimators to detect the 
number P. 

V. CONCLUSION 
We proposed, in this paper, the fifth order phase operators 

for narrowband DOA estimation which is applicable when the 
number of sensors in the antenna is larger than the number of 
radiating sources. 

The proposed idea consists of dividing the array steering 
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matrix into five linearly dependent phase from which we 
derived five almost equivalent noise subspace projectors, 
where each operator is computed by exploiting the linear maps 
between the corresponding blocks of the spectral matrix. The 
simulation results confirmed the validity of the proposed 
approach comparatively to standard high resolution spectral 
techniques.  
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