Search results for: heat transfer coefficient
79 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.
Keywords: Improved QoE, OpenFlow SDN controller, IPTV service application, softwarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103078 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure
Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh
Abstract:
The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different from those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel, along with the associated edge stiffeners, subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in a parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, both the plate slenderness and the aspect ratio influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.Keywords: Thin plate, transverse shear, tension field, finite element analysis, parametric study, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197377 Bronchospasm Analysis Following the Implementation of a Program of Maximum Aerobic Exercise in Active Men
Authors: Sajjad Shojaeidoust, Mohsen Ghanbarzadeh, Abdolhamid Habibi
Abstract:
Exercise-induced bronchospasm (EIB) is a transitory condition of airflow obstruction that is associated with physical activities. It is noted that high ventilation can lead to an increase in the heat and reduce in the moisture in airways resistance of trachea. Also causes of pathophysiological mechanism are EIB. Accordingly, studying some parameters of pulmonary function (FVC, FEV1) among active people seems quintessential. The aim of this study was to analyze bronchospasm following the implementation of a program of maximum aerobic exercise in active men at Chamran University of Ahwaz. Method: In this quasi-experimental study, the population consisted of all students at Chamran University. Among from 55 participants, of which, 15 were randomly selected as the experimental group. In this study, the size of the maximum oxygen consumption was initially measured, and then, based on the maximum oxygen consumed, the active individuals were identified. After five minutes’ warm-up, Strand treadmill exercise test was taken (one session) and pulmonary parameters were measured at both pre- and post-tests (spirometer). After data normalization using KS and non-normality of the data, the Wilcoxon test was used to analyze the data. The significance level for all statistical surveys was considered p≤0/05. Results: The results showed that the ventilation factors and bronchospasm (FVC, FEV1) in the pre-test and post-test resulted in no significant difference among the active people (p≥0/05). Discussion and conclusion: Based on the results observed in this study, it appears that pulmonary indices in active individuals increased after aerobic test. The increase in this indicator in active people is due to increased volume and elasticity of the lungs as well. In other words, pulmonary index is affected by rib muscles. It is considered that progress over respiratory muscle strength and endurance has raised FEV1 in the active cases.Keywords: Bronchospasm, aerobic active maximum, pulmonary function, spirometer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113776 Multi-Objective Optimization of Gas Turbine Power Cycle
Authors: Mohsen Nikaein
Abstract:
Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252375 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation
Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke
Abstract:
Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.Keywords: Automatic calibration framework, approximate Bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174074 Integrated Education at Jazan University: Budding Hope for Employability
Authors: Jayanthi Rajendran
Abstract:
Experience is what makes a man perfect. Though we tend to learn many a different things in life through practice still we need to go an extra mile to gain experience which would be profitable only when it is integrated with regular practice. A clear phenomenal idea is that every teacher is a learner. The centralized idea of this paper would focus on the integrated practices carried out among the students of Jizan University which enhances learning through experiences. Integrated practices like student-directed activities, balanced curriculum, phonological based activities and use of consistent language would enlarge the vision and mission of students to earn experience through learning. Students who receive explicit instruction and guidance could practice the skills and strategies through student-directed activities such as peer tutoring and cooperative learning. The second effective practice is to use consistent language. Consistent language provides students a model for talking about the new concepts which also enables them to communicate without hindrances. Phonological awareness is an important early reading skill for all students. Students generally have phonemic awareness in their home language can often transfer that knowledge to a second language. And also a balanced curriculum requires instruction in all the elements of reading. Reading is the most effective skill when both basic and higher-order skills are included on a daily basis. Computer based reading and listening skills will empower students to understand language in a better way. English language learners can benefit from sound reading instruction even before they are fully proficient in English as long as the instruction is comprehensible. Thus, if students have to be well equipped in learning they should foreground themselves in various integrated practices through multifarious experience for which teachers are moderators and trainers. This type of learning prepares the students for a constantly changing society which helps them to meet the competitive world around them for better employability fulfilling the vision and mission of the institution.
Keywords: Consistent language, employability, phonological awareness, balanced curriculum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162573 Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications
Authors: Nabil A. Ahmed
Abstract:
This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.Keywords: Induction heating, three-phase, conversion circuit, pulse width modulation, pulse density modulation, high frequency, soft switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217772 Predictive Factors of Exercise Behaviors of Junior High School Students in Chonburi Province
Authors: Tanida Julvanichpong
Abstract:
Exercise has been regarded as a necessary and important aspect to enhance physical performance and psychology health. Body weight statistics of students in junior high school students in Chonburi Province beyond a standard risk of obesity. Promoting exercise among Junior high school students in Chonburi Province, essential knowledge concerning factors influencing exercise is needed. Therefore, this study aims to (1) determine the levels of perceived exercise behavior, exercise behavior in the past, perceived barriers to exercise, perceived benefits of exercise, perceived self-efficacy to exercise, feelings associated with exercise behavior, influence of the family to exercise, influence of friends to exercise, and the perceived influence of the environment on exercise. (2) examine the predicting ability of each of the above factors while including personal factors (sex, educational level) for exercise behavior. Pender’s Health Promotion Model was used as a guide for the study. Sample included 652 students in junior high schools, Chonburi Provience. The samples were selected by Multi-Stage Random Sampling. Data Collection has been done by using self-administered questionnaires. Data were analyzed using descriptive statistics, Pearson’s product moment correlation coefficient, Eta, and stepwise multiple regression analysis. The research results showed that: 1. Perceived benefits of exercise, influence of teacher, influence of environmental, feelings associated with exercise behavior were at a high level. Influence of the family to exercise, exercise behavior, exercise behavior in the past, perceived self-efficacy to exercise and influence of friends were at a moderate level. Perceived barriers to exercise were at a low level. 2. Exercise behavior was positively significant related to perceived benefits of exercise, influence of the family to exercise, exercise behavior in the past, perceived self-efficacy to exercise, influence of friends, influence of teacher, influence of environmental and feelings associated with exercise behavior (p < .01, respectively) and was negatively significant related to educational level and perceived barriers to exercise (p < .01, respectively). Exercise behavior was significant related to sex (Eta = 0.243, p=.000). 3. Exercise behavior in the past, influence of the family to exercise significantly contributed 60.10 percent of the variance to the prediction of exercise behavior in male students (p < .01). Exercise behavior in the past, perceived self-efficacy to exercise, perceived barriers to exercise, and educational level significantly contributed 52.60 percent of the variance to the prediction of exercise behavior in female students (p < .01).
Keywords: Predictive factors, exercise behaviors, junior high school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117871 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria
Authors: D. Tsuanyo, D. Aussel, Y. Azoumah, P. Neveu
Abstract:
An innovative concept called “Flexy-Energy” is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energy sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel Diesel generators and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel Diesel generators. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand.This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.
Keywords: Investments criteria, Optimization, PV hybrid, Sizing, Rural electrification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205370 Representation of Memory of Forced Displacement in Central and Eastern Europe after World War II in Polish and German Cinemas
Authors: Ilona Copik
Abstract:
The aim of this study is to analyze the representation of memories of the forced displacement of Poles and Germans from the eastern territories in 1945 as depicted by Polish and German feature films between the years 1945-1960. The aftermath of World War II and the Allied agreements concluded at Yalta and Potsdam (1945) resulted in changes in national borders in Central and Eastern Europe and the large-scale transfer of civilians. The westward migration became a symbol of the new post-war division of Europe, new spheres of influence separated by the Iron Curtain. For years it was a controversial topic in both Poland and Germany due to the geopolitical alignment (the socialist East and capitalist West of Europe), as well as the unfinished debate between the victims and perpetrators of the war. The research premise is to take a comparative view of the conflicted cultures of Polish and German memory, to reflect on the possibility of an international dialogue about the past recorded in film images, and to discover the potential of film as a narrative warning against totalitarian inclinations. Until now, films made between 1945 and 1960 in Poland and the German occupation zones have been analyzed mainly in the context of artistic strategies subordinated to ideology and historical politics. In this study, the intention is to take a critical approach leading to the recognition of how films work as collective memory media, how they reveal the mechanisms of memory/ forgetting, and what settlement topoi and migration myths they contain. The main hypothesis is that feature films about forced displacement, in addition to the politics of history - separate in each country - reveal comparable transnational individual experiences: the chaos of migration, the trauma of losing one's home, the conflicts accompanying the familiar/foreign, the difficulty of cultural adaptation, the problem of lost identity, etc.
Keywords: Forced displacement, Polish and German cinema, war victims, World War II.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15069 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum
Authors: Krasimira Georgieva, Yordan Denev
Abstract:
Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.
Keywords: Gas-filled thermosets, mechanical properties, phosphogypsum, urea-formaldehyde resins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71368 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter
Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar
Abstract:
Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).Keywords: Filter media, hydraulic loading rate, residence time distribution, tracer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187167 Analysis of Trend and Variability of Rainfall in the Mid-Mahanadi River Basin of Eastern India
Authors: Rabindra K. Panda, Gurjeet Singh
Abstract:
The major objective of this study was to analyze the trend and variability of rainfall in the middle Mahandi river basin located in eastern India. The trend of variation of extreme rainfall events has predominant effect on agricultural water management and extreme hydrological events such as floods and droughts. Mahanadi river basin is one of the major river basins of India having an area of 1,41,589 km2 and divided into three regions: Upper, middle and delta region. The middle region of Mahanadi river basin has an area of 48,700 km2 and it is mostly dominated by agricultural land, where agriculture is mostly rainfed. The study region has five Agro-climatic zones namely: East and South Eastern Coastal Plain, North Eastern Ghat, Western Undulating Zone, Western Central Table Land and Mid Central Table Land, which were numbered as zones 1 to 5 respectively for convenience in reporting. In the present study, analysis of variability and trends of annual, seasonal, and monthly rainfall was carried out, using the daily rainfall data collected from the Indian Meteorological Department (IMD) for 35 years (1979-2013) for the 5 agro-climatic zones. The long term variability of rainfall was investigated by evaluating the mean, standard deviation and coefficient of variation. The long term trend of rainfall was analyzed using the Mann-Kendall test on monthly, seasonal and annual time scales. It was found that there is a decreasing trend in the rainfall during the winter and pre monsoon seasons for zones 2, 3 and 4; whereas in the monsoon (rainy) season there is an increasing trend for zones 1, 4 and 5 with a level of significance ranging between 90-95%. On the other hand, the mean annual rainfall has an increasing trend at 99% significance level. The estimated seasonality index showed that the rainfall distribution is asymmetric and distributed over 3-4 months period. The study will help to understand the spatio-temporal variation of rainfall and to determine the correlation between the current rainfall trend and climate change scenario of the study region for multifarious use.
Keywords: Eastern India, long-term variability and trends, Mann-Kendall test, seasonality index, spatio-temporal variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163466 Influence of Sire Breed, Protein Supplementation and Gender on Wool Spinning Fineness in First-Cross Merino Lambs
Authors: A. E. O. Malau-Aduli, B. W. B. Holman, P. A. Lane
Abstract:
Our objectives were to evaluate the effects of sire breed, type of protein supplement, level of supplementation and sex on wool spinning fineness (SF), its correlations with other wool characteristics and prediction accuracy in F1 Merino crossbred lambs. Texel, Coopworth, White Suffolk, East Friesian and Dorset rams were mated with 500 purebred Merino dams at a ratio of 1:100 in separate paddocks within a single management system. The F1 progeny were raised on ryegrass pasture until weaning, before forty lambs were randomly allocated to treatments in a 5 x 2 x 2 x 2 factorial experimental design representing 5 sire breeds, 2 supplementary feeds (canola or lupins), 2 levels of supplementation (1% or 2% of liveweight) and sex (wethers or ewes). Lambs were supplemented for six weeks after an initial three weeks of adjustment, wool sampled at the commencement and conclusion of the feeding trial and analyzed for SF, mean fibre diameter (FD), coefficient of variation (CV), standard deviation, comfort factor (CF), fibre curvature (CURV), and clean fleece yield. Data were analyzed using mixed linear model procedures with sire fitted as a random effect, and sire breed, sex, supplementary feed type, level of supplementation and their second-order interactions as fixed effects. Sire breed (P<0.001), sex (P<0.004), sire breed x level of supplementation (P<0.004), and sire breed x sex (P<0.019) interactions significantly influenced SF. SF ranged from 22.7 ± 0.2μm in White Suffolk-sired lambs to 25.1 ± 0.2μm in East Friesian crossbred lambs. Ewes had higher SF than wethers. There were significant (P<0.001) correlations between SF and FD (0.93), CV (0.40), CF (-0.94) and CURV (-0.12). Its strong relationship with other wool quality traits enabled accurate predictions explaining up to about 93% of the observed variation. The interactions between sire breed genetics and nutrition will have an impact on the choices that dual-purpose sheep producers make when selecting sire breeds and protein supplementary feed levels to achieve optimal wool spinning fineness at the farmgate level. This will facilitate selective breeding programs being able to better account for SF and its interactions with other wool characteristics.Keywords: Merino crossbred sheep, protein supplementation, sire breed, wool quality, wool spinning fineness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217865 Performance Analysis of HSDPA Systems using Low-Density Parity-Check (LDPC)Coding as Compared to Turbo Coding
Authors: K. Anitha Sheela, J. Tarun Kumar
Abstract:
HSDPA is a new feature which is introduced in Release-5 specifications of the 3GPP WCDMA/UTRA standard to realize higher speed data rate together with lower round-trip times. Moreover, the HSDPA concept offers outstanding improvement of packet throughput and also significantly reduces the packet call transfer delay as compared to Release -99 DSCH. Till now the HSDPA system uses turbo coding which is the best coding technique to achieve the Shannon limit. However, the main drawbacks of turbo coding are high decoding complexity and high latency which makes it unsuitable for some applications like satellite communications, since the transmission distance itself introduces latency due to limited speed of light. Hence in this paper it is proposed to use LDPC coding in place of Turbo coding for HSDPA system which decreases the latency and decoding complexity. But LDPC coding increases the Encoding complexity. Though the complexity of transmitter increases at NodeB, the End user is at an advantage in terms of receiver complexity and Bit- error rate. In this paper LDPC Encoder is implemented using “sparse parity check matrix" H to generate a codeword at Encoder and “Belief Propagation algorithm "for LDPC decoding .Simulation results shows that in LDPC coding the BER suddenly drops as the number of iterations increase with a small increase in Eb/No. Which is not possible in Turbo coding. Also same BER was achieved using less number of iterations and hence the latency and receiver complexity has decreased for LDPC coding. HSDPA increases the downlink data rate within a cell to a theoretical maximum of 14Mbps, with 2Mbps on the uplink. The changes that HSDPA enables includes better quality, more reliable and more robust data services. In other words, while realistic data rates are only a few Mbps, the actual quality and number of users achieved will improve significantly.Keywords: AMC, HSDPA, LDPC, WCDMA, 3GPP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204764 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia
Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi
Abstract:
The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.Keywords: Current track velocities, Gymea Bay, surface sediments, trace elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210763 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination
Authors: N. Santatriniaina, J. Deseure, T.Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana
Abstract:
Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 [mm] is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.
Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317362 Adaptation Measures for Sustainable Development of the Agricultural Potential of the Flood-Risk Zones of Ghareb Lowland, Morocco
Authors: R. Bourziza, W. El Khoumsi, I. Mghabbar, I. Rahou
Abstract:
The flood-risk zones called Merjas are lowlands that are flooded during the rainy season. Indeed, these depressed areas were reclaimed to dry them out in order to exploit their agricultural potential. Thus, farmers were able to start exploiting these drained lands. As the development of modern agriculture in Morocco progressed, farmers began to practice irrigated agriculture. In a context of vulnerability to floods and the need for optimal exploitation of the agricultural potential of the flood-risk zones, the question of how farmers are adapting to this context and the degree of exploitation of this potential arises. It is in these circumstances that this work was initiated, aiming at the characterization of irrigation practices in the flood-risk zones of the Ghareb lowland (Morocco). This characterization is based on two main axes: the characterization of irrigation techniques used, as well as the management of irrigation in these areas. In order to achieve our objective, two complementary approaches have been adopted; the first one is based on interviews with administrative agents and on farmer surveys, and the second one is based on field measurements of a few parameters, such as flow rate, pressure, uniformity coefficient of drippers and salinity. The results of this work led to conclude that the choice of the practiced crop (crop resistant to excess water in winter and vegetable crops during other seasons) and the availability and nature of water resources are the main criteria that determine the choice of the irrigation system. Even if irrigation management is imprecise, farmers are able to achieve agricultural yields that are comparable to those recorded in the entire irrigated perimeter. However, agricultural yields in these areas are still threatened by climate change, since these areas play the role of water retaining basins during floods by protecting the downstream areas, which can also damage the crops there instilled during the autumn. This work has also noted that the predominance of private pumping in flood-risk zones in the coastal zone creates a risk of marine intrusion, which risks endangering the groundwater table. Thus, this work enabled us to understand the functioning and the adaptation measures of these vulnerable zones for the sustainability of the Merjas and a better valorization of these marginalized lowlands.
Keywords: Flood-risk zones, irrigation practices, climate change, adaptation measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43361 Two-Level Identification of HVAC Consumers for Demand Response Potential Estimation Based on Setpoint Change
Authors: M. Naserian, M. Jooshaki, M. Fotuhi-Firuzabad, M. Hossein Mohammadi Sanjani, A. Oraee
Abstract:
In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a solution is presented to uncover consumers with high air conditioner demand among a large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.
Keywords: Data-driven analysis, demand response, direct load control, HVAC system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23960 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.
Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168059 Potential of Native Microorganisms in Tagus Estuary
Authors: Ana C. Sousa, Beatriz C. Santos, Fátima N. Serralha
Abstract:
The Tagus estuary is heavily affected by industrial and urban activities, making bioremediation studies crucial for environmental preservation. Fuel contamination in the area can arise from various anthropogenic sources, such as oil spills from shipping, fuel storage and transfer operations, and industrial discharges. These pollutants can cause severe harm to the ecosystem and the organisms, including humans, that inhabit it. Nonetheless, there are always natural organisms with the ability to resist these pollutants and transform them into non-toxic or harmless substances, which defines the process of bioremediation. Exploring the microbial communities existing in soil and their capacity to break down hydrocarbons has the potential to enhance the development of more efficient bioremediation approaches. The aim of this investigation was to explore the existence of hydrocarbonoclastic microorganisms in six locations within the Tagus estuary, three on the north bank: Trancão River, Praia Fluvial do Cais das Colinas and Praia de Algés, and three on the south bank: Praia Fluvial de Alcochete, Praia Fluvial de Alburrica, and Praia da Trafaria. In all studied locations, native microorganisms of the genus Pseudomonas were identified. The bioremediation rate of common hydrocarbons like gasoline, hexane, and toluene was assessed using the redox indicator 2,6-dichlorophenolindophenol (DCPIP). Effective hydrocarbon-degrading bacterial strains were identified in all analyzed areas, despite adverse environmental conditions. The highest bioremediation rates were achieved for gasoline (68%) in Alburrica, hexane (65%) in Algés, and toluene (79%) in Algés. Generally, the bacteria demonstrated efficient degradation of hydrocarbons added to the culture medium, with higher rates of aerobic biodegradation of hydrocarbons observed. These findings underscore the necessity for further in situ studies to better comprehend the relationship between native microbial communities and the potential for pollutant degradation in soil.
Keywords: Biodegradability rate, hydrocarbonoclastic microorganisms, soil bioremediation, Tagus estuary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15558 Performance, Emission and Combustion Characteristics of a Variable Compression Ratio Diesel Engine Fueled with Karanj Biodiesel and Its Blends
Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare
Abstract:
The use of biodiesel in conventional diesel engines results in substantial reduction of unburned hydrocarbon, carbon monoxide and particulate matters. The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio engine when fueled with Karanja (Pongamia) methyl ester and its 10-50 % blends with diesel (on a volume basis) are investigated and compared with standard diesel. The suitability of karanja methyl ester as a biofuel has been established in this study. The useful brake power obtained is similar to diesel fuel for all loads. Experiment has been conducted at a fixed engine speed of 1500 rpm, variable load and at compression ratios of 17.5:1 and 18.5:1. The impact of compression ratio on fuel consumption, combustion pressures and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for pongamia oil methyl ester when compared to that of diesel. The brake thermal efficiency for pongamia oil methyl ester blends and diesel has been calculated and the blend B20 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions. PME as an oxygenated fuel generated more complete combustion, which means increased torque and power. This is also supported with higher thermal efficiencies of the PME blends. NOx is slightly increased due to the higher combustion temperature and the presence of fuel oxygen with the blend at full load. PME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.
Keywords: Variable compression ratio CI engine, performance, combustion, emissions, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329857 A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation
Authors: Marko Spasojevic, Ying Hei Chui, Yuxiang Chen
Abstract:
Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2×4 and 2×6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities.
Keywords: Hygrothermal analysis, insulated sheathing, moisture performance, nail joints, wood shear wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63856 Milling Simulations with a 3-DOF Flexible Planar Robot
Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden
Abstract:
Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.Keywords: Control, machining, multibody, robotic, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136755 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment
Authors: Guarry Montrose, Ted Soubdhan
Abstract:
In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.
Keywords: Plant fibers, tropical climates, sustainable development, waste reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55254 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study
Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho
Abstract:
The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168553 Corporate Information System Educational Center
Authors: Alquliyev R.M., Kazimov T.H., Mahmudova Sh.C., Mahmudova R.Sh.
Abstract:
The given work is devoted to the description of Information Technologies NAS of Azerbaijan created and successfully maintained in Institute. On the basis of the decision of board of the Supreme Certifying commission at the President of the Azerbaijan Republic and Presidium of National Academy of Sciences of the Azerbaijan Republic, the organization of training courses on Computer Sciences for all post-graduate students and dissertators of the republic, taking of examinations of candidate minima, it was on-line entrusted to Institute of Information Technologies of the National Academy of Sciences of Azerbaijan. Therefore, teaching the computer sciences to post-graduate students and dissertators a scientific - methodological manual on effective application of new information technologies for research works by post-graduate students and dissertators and taking of candidate minima is carried out in the Educational Center. Information and communication technologies offer new opportunities and prospects of their application for teaching and training. The new level of literacy demands creation of essentially new technology of obtaining of scientific knowledge. Methods of training and development, social and professional requirements, globalization of the communicative economic and political projects connected with construction of a new society, depends on a level of application of information and communication technologies in the educational process. Computer technologies develop ideas of programmed training, open completely new, not investigated technological ways of training connected to unique opportunities of modern computers and telecommunications. Computer technologies of training are processes of preparation and transfer of the information to the trainee by means of computer. Scientific and technical progress as well as global spread of the technologies created in the most developed countries of the world is the main proof of the leading role of education in XXI century. Information society needs individuals having modern knowledge. In practice, all technologies, using special technical information means (computer, audio, video) are called information technologies of education.Keywords: Educational Center, post-graduate, database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171352 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language
Authors: Leo Laine, Morgan Johansson
Abstract:
To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.
Keywords: Airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90751 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy
Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda
Abstract:
Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.Keywords: Tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147750 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations
Authors: K. Al Ammari, B. G. Clarke
Abstract:
Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.
Keywords: Bearing capacity, design, Installation, numerical analysis, settlement, stone column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835