
 

 

 
Abstract—Hydrologic models are increasingly used as tools to 

predict stormwater quantity and quality from urban catchments. 
However, due to a range of practical issues, most models produce 
gross errors in simulating complex hydraulic and hydrologic systems. 
Difficulty in finding a robust approach for model calibration is one of 
the main issues. Though automatic calibration techniques are 
available, they are rarely used in common commercial hydraulic and 
hydrologic modelling software e.g. MIKE URBAN. This is partly 
due to the need for a large number of parameters and large datasets in 
the calibration process. To overcome this practical issue, a 
framework for automatic calibration of a hydrologic model was 
developed in R platform and presented in this paper. The model was 
developed based on the time-area conceptualization. Four calibration 
parameters, including initial loss, reduction factor, time of 
concentration and time-lag were considered as the primary set of 
parameters. Using these parameters, automatic calibration was 
performed using Approximate Bayesian Computation (ABC). ABC is 
a simulation-based technique for performing Bayesian inference 
when the likelihood is intractable or computationally expensive to 
compute. To test the performance and usefulness, the technique was 
used to simulate three small catchments in Gold Coast. For 
comparison, simulation outcomes from the same three catchments 
using commercial modelling software, MIKE URBAN were used. 
The graphical comparison shows strong agreement of MIKE URBAN 
result within the upper and lower 95% credible intervals of posterior 
predictions as obtained via ABC. Statistical validation for posterior 
predictions of runoff result using coefficient of determination (CD), 
root mean square error (RMSE) and maximum error (ME) was found 
reasonable for three study catchments. The main benefit of using 
ABC over MIKE URBAN is that ABC provides a posterior 
distribution for runoff flow prediction, and therefore associated 
uncertainty in predictions can be obtained. In contrast, MIKE 
URBAN just provides a point estimate. Based on the results of the 
analysis, it appears as though ABC the developed framework 
performs well for automatic calibration. 
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I. INTRODUCTION 

YDROLOGIC models are commonly used to simulate 
rainfall-runoff processes. Hydrologic model is generally 

a combination of runoff generation model and runoff routing 
model. Runoff generation model converts rainfall to surface 
runoff and runoff routing model translates the surface runoff 
into the catchment outlet. Most urban hydrologic models 
typically accompany a hydraulic model component in order to 
simulate stormwater runoff in pipe and channel systems. 
Hydraulic model mainly replicates the conveyance of flow 
using the concepts of open channel flow hydraulic theories 
[1]. 

Hydrologic models are developed based on different 
conceptualizations such as time-area method and storage 
reservoir routing method [1]. Irrespective of the 
conceptualization used, the model is built based on 
mathematical equations that replicate common hydrologic 
processes in a catchment, utilizing a range of parameters to 
represent different catchments, rainfall and drainage 
characteristics. Though there is a specific physical meaning, 
there are situations where these parameters are difficult to 
derive using geographic, climatic or catchment characteristics 
[2]. Hence, typical values are often used during simulation of 
models.  

Due to critical involvement of model outputs in decision 
making, there is a necessity to develop an appropriate 
approach to obtain estimates of model parameters. In this 
regard, model calibration plays a vital part. A range of 
researchers have argued that the approach to be used for 
model calibration is a critical factor influencing the accuracy 
of model outcomes [3]. In this context, developing an 
automatic calibration procedure for urban hydrologic models 
can be regarded as important. Having an automatic calibration 
procedure can eliminate the ‘trial and error’ processes that are 
adopted in manual calibration so that there is no influence 
exerted by subjective selections. Furthermore, automatic 
calibration procedure can produce more reliable model 
outcomes. However, most commercial modelling software 
does not provide automatic calibration facilities [4]. These 
may be due to the involvement of large number of parameters 
and large datasets in the calibration process. It is also difficult 
to integrate user selected automatic calibration procedures 
with these software packages due to their ‘black box’ nature of 
conceptualization and model structure. This highlights the 
importance of developing a specialized automatic calibration 
procedure that can be used as a tool to obtain reliable model 
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parameters. 
Most of the existing parameter estimation methods are 

formed typically based on a likelihood function. However, in 
scenarios where the model is a complex integration of 
equations with a range of parameters such as a hydrologic 
model, the likelihood function may be challenging and/or 
computationally expensive to compute [5]. To overcome this, 
this paper introduces an innovative calibration framework 
using Approximate Bayesian Computation (ABC) for use in 
urban hydrologic models. The main advantage of using this 
framework is that ABC enables one to perform Bayesian 
inference in calibration. Hence, the developed ABC 
framework can be applied for automatic calibration of desired 
parameters in hydrologic modelling.  

II. MATERIALS AND METHODS 

A. Study Sites 

The study sites were selected primarily based on the 
availability of geographical and meteorological data relating to 
the catchment, drainage networks and rainfall, and monitored 
data relating to stormwater runoff. The selected study sites are 
situated in Gold Coast region, south east Queensland. They are 
three small catchments, namely, Alextown, Gumbeel and 
Birdlife Park, situated within the Highland Park residential 
area are shown in Fig. 1. The baseline data relating to 
catchment and drainage networks were obtained from Gold 
Coast City Council (GCCC) data bases. Rainfall and runoff 
data were obtained from the catchment monitoring program 
established in these three catchment from 2002 to 2004.  

 

 

Fig. 1 Locations of Study Catchments within Highland Park 
Residential Area [21] 

 
The required catchment data for hydrologic simulation 

included land use, slope, catchment areas, the proportion of 
impervious areas and land cover. This information was 
collected from the review of previous study conducted by [7]. 
The required drainage system network data for hydraulic 
simulation included gully pit locations, size, pipe diameter, 
length, ground elevation and invert elevation.  

B. Specialized Modelling Using R Package 

Hydrologic model was developed using R software based 

on time-area conceptualization. Modelling with R is more 
flexible than using other programming software. This is 
because R provides a powerful platform and language for 
statistical computing and graphics. Currently R is widely used 
for research in a diversity of sectors due to its flexibility in 
data manipulation, usability and additional functionality 
facilitated by user created software packages. For example, the 
“EasyABC” package within R enables the application of ABC 
methods for data analysis [8]. In this regard, the use of R in 
combination with the R-Studio interface provides greater 
flexibility [9].  

The developed model uses time-area method as the basic 
conceptualisation. The time-area diagram represents the 
relationships between contributing catchment area and the 
runoff rate. To develop a time-area diagram, the catchments 
time of concentration is divided into a number of equal time 
steps. For each time step, contributing catchment area is 
estimated and demarcated as zones delimited by isochrones 
line [10]. The delimited subareas by the isochrones can be 
measured and plotted as time-area diagram are shown in Fig. 
2. 

 

 

Fig. 2 Time-area routing model [10] 
 
Time-area relationship is typically considered as linear. 

However, it may be considered as concave or convex shape 
depending on the catchment geometry and other influential 
factors to represent non-linearity [10]. For consistency of the 
model, the time step of the effective storm hyetograph is 
considered as same as the time step of the time-area diagram 
as shown in Fig. 2. The routing procedure adopted in time-
area method calculates each flow time separately depending 
on the physical characteristics of each delineated zone [10]. At 
the end of each time interval, the partial flow is computed by 
the product of effective rainfall and the contributing subarea of 
the catchment. The desired runoff hydrograph is then 
produced by the summation of the partial flows as illustrated 
in Fig. 2. 

Birdlife Park 

Alextown 

Gumbeel 

Catchment Boundary 
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The advantage of time-area routing models is twofold. 
Firstly, the user has the freedom to specify the time-area 
diagram prior to any modelling being undertaken. Secondly, 
only a few parameters require physical interpretation [4]. Due 
to this, the time-area routing model provides greater flexibility 
and requires less computational effort compared to other 
physically and conceptually based models. MIKE URBAN 
(MOUSE), ILSAX and DRAINS are commonly used 
hydrologic models in Australia that have been developed 
based on the time-area routing procedure [4], [10]. 

Hydraulic models are commonly used for pipe and channel 
flow routing. The hydraulic model developed in R software 
was based on the time-lag method. Time-lag method computes 
the maximum travel time separately through a pipe or channel 
from inlet points to outlet for each partial flow [11]. Then the 
individual partial flows were lagged using corresponding lag 
time and aggregated to produce the final hydrograph at the 
pipe outlet.  

To enable the use of the EasyABC package with developed 
models in R, datasets were prepared in specific formats. The 
developed model in R was associated with four calibration 
parameters. These are initial loss (IL), time of concentration 
(TC), reduction factor (RF) and time-lag (TL). The calibration 
framework was developed by combining the developed model 
with EasyABC package functions in R. Hence, the developed 
framework was used for automatic calibration through 
Bayesian inference. The calibration was an iterative process 
and R facilitates the parameters estimation by enabling a large 
number of iterations within the given parameters range [12]. 
The posterior distribution of parameters can be displayed 
graphically by drawing a histogram or density curve. The 
accuracy of simulation result can also be evaluated using the 
upper and lower 95% credible intervals in R. 

C. Mike Urban Modelling 

To validate the model developed in R, a separate set of 
models were also developed using commercial modelling 
software, MIKE URBAN, developed by the Danish Hydraulic 
Institute (DHI). MIKE URBAN is an Arc GIS-supported 
hydrologic and hydraulic process simulation software. The 
software provides MOUSE engine which enables hydrologic 
simulation based on selected time-area routing procedures. 
Accordingly, three separate models for the selected three 
catchments were developed using MIKE URBAN software 
based on the collected catchment and drainage network data. 
An extensive review of published literature and desktop study 
was undertaken to facilitate the MIKE URBAN modelling 
task. The software is widely used and accepted among the 
research community [4]. 

D. Bayesian Inference via Approximate Bayesian 
Computation 

Bayesian inference is a special technique of statistical 
inference developed based on Bayes' theory. In typical 
practice, Bayesian inference determines the posterior 
distribution of the parameters by the combination of two 
probability distributions: the prior distribution and the 

likelihood function. Typical expression for posterior 
distribution is presented in (1) [13]: 

 

     
 

|
|

p y
P y

p y

  
                                    (1) 

 
where, π(θ) is the prior distribution of parameters, P(θ|y) is the 
posterior distribution of parameters, p(y|θ) is the likelihood, 
and p(y) is the marginal likelihood or model evidence. 

In all model-based applications that use Bayesian statistical 
inference, the likelihood function is of particular concern. For 
simple models, likelihood function can typically be 
determined straight forwardly. However, most hydrologic 
models are complex and contain a range of parameters directly 
expressing features of natural processes. As such, the 
likelihood function becomes more difficult to define and 
compute [5], [14]. This leads to complexities in deriving or 
sampling of parameters from posterior distributions. To 
overcome this challenge, Approximate Bayesian Computation 
(ABC) is used. ABC is a simulation-based approach to avoid 
evaluation of the likelihood function by comparing observed 
data with simulated data [6]. Due to this, ABC has gained 
popularity over the last few decades in different sectors of 
biological sciences such as population genetics, epidemiology, 
ecology, and systems biology [5], [6], [15].  

The likelihood free computation constitutes a process for 
accepting parameter values from a chain of parameter 
proposals once they satisfy the criteria for comparing observed 
and simulated data [16]. The process is dependent on the 
probability of matching observed and simulated data [14]. If 
the probability of matching data is very small, a tolerance limit 
between simulated and observed data may be allowed to 
increase at an acceptable rate. The tolerance limit is the 
distance that determines the level of discrepancy between each 
pair of observed and simulated data in each simulation. If the 
data are continuous and in highly dimensional, then one needs 
to reduce the dimensionality of problem as poor acceptance 
rates will be observed or high tolerance levels will be needed, 
both of which are not desirable. The dimensionality problem 
arises if a sample consists of many univariate or multivariate 
measurements in analysis. Hence, as such situations summary 
statistics can be used to reduce the dimensionality of the 
problem [17]. Summary statistics reduce the dimensionality of 
data by generating datasets with small distance to observed 
and simulated data. Generally, low dimensional summary 
statistics are used to capture required information in 
comparison between observed and simulated data to increase 
more acceptance rate under low tolerance levels. Hence 
posterior predictions of parameters and runoff results are 
obtained through ABC from accepted parameters values and 
corresponding simulation results. For this study, standard 
rejection algorithms were developed as noted below, based on 
the tolerance limit and summary statistics [17]. 

Given observed data y, the following algorithm is repeated 
until a total number of simulations have been performed 
1. Draw θ ~ π(θ). 
2. Simulate xi ~ p(x|θi). 
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3. Accept θi if ρ(S(xi), S(y)) < ϵ. 
4. Otherwise, reject and repeat the process. 

E. Statistical Validation 

In hydrologic modelling, model’s performance is judged to 
be acceptable if it satisfies specific statistical evaluation 
criteria as shown in (2)-(4) [18]. These statistical evaluations 
include coefficient of determination (CD), root mean square 
error (RMSE) and maximum error (ME). These evaluations 
are necessary to judge the best fit of calibrated parameters 
with the developed model by comparing measured and 
simulated results. The mathematical expressions of these 
measurements are given below: 
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where, n = Total number of observations, S = Simulated 
posterior mean results, O = Observed results, Ō = Mean of the 
observed results. CD value is a measure of the proportion of 
the total variance of observed data explained by the predicted 
data. ME value measures the maximum errors for any specific 
time steps from the total observation. The over-estimation or 
under-estimation in comparison to observed values are 
indicated by the RMSE value. CD, RMSE and ME values 
close to 1, 0 and 0, respectively, means negligible error 
between the observed and simulated results [19]. 

The evaluation of model performance by graphical 
presentations can also be useful for viewing distribution 
patterns. The graphical presentations can include trends 
analysis of measured and simulated data [18]. For example, 
credible intervals are an estimate in statistics for determining 
parameter uncertainty in broader application of models. The 
upper and lower 95% credible intervals are typically used to 
judge the accuracy of model calibration and statistical 
validation of the model. These methods were adopted for 
comparison of outputs from the model developed in R with 
MIKE URBAN simulation outcomes. 

III. RESULT AND DISCUSSIONS 

Required rainfall and runoff data for model calibrations 
were selected by a careful inspection of the available 
measured rainfall events and corresponding runoff data. Other 
input data such as catchment subdivision areas and impervious 
fractions were also prepared in the required form. Details of 
the selected input data for three study catchments are shown in 
Table I. The same input data were used for MIKE URBAN 
simulations so that the model developed in R can be validated. 
The developed model has four calibration parameters. For 

each parameter (IL, TC, RF and TL), suitable log-normal 
distributions were chosen as prior distributions based on the 
historical rainfall patterns, and to draw the positive parameter 
values. During calibration, four parameter values were drawn 
from prior distributions for each independent sampling. By 
this way, 200,000 samples were drawn independently from 
each distribution.  

 
TABLE I 

SELECTED RAINFALL, RUNOFF EVENTS, CATCHMENT SUBDIVISIONS, 
IMPERVIOUS FRACTIONS FOR CALIBRATION AND CALIBRATED PARAMETER 

VALUES 

Symbol Alextown Gumbel Birdlife Park 

Selected rainfall events 10 10 10 

Selected runoff events 10 10 10 

Catchment subdivisions 27 2 54 

Impervious fractions (%) 57.2 45.8 40.7 
Calibrated parameters 

value 
Range   Mean Range    Mean Range Mean

IL 0.82-1.12 1.03 0.81-1.12  0.97 0.09-0.10  0.095

TC 19.9-30.6  23.8 27.9-43.0  36.4 15.6-31.2  23.0

RF 0.65-1.0   0.87 0.10-0.23  0.15 0.62-1.45  1.0 

TL 0.67-1.61  1.05 11.8-17.8  14.3 0.08-0.12  0.10

IL = initial loss, TC = time of concentration, RF = reduction factor, TL = 
time-lag. 

 
Calibration was performed on single event basis using high 

performance computing system (HPC) undertaking 200,000 
iterations using the standard rejection ABC algorithm. The 
standard rejection ABC algorithm shown in Section D above 
was performed in four steps. Generally, ABC rejection method 
does not require to specify tolerance limit because it is implied 
once to choose the proportion of samples to keep. 
Accordingly, best 40,000 samples and corresponding 
simulation results were retained. Each single event calibration 
produces posterior distributions of four calibrated parameters. 
The minimum and maximum range of calibrated parameter 
values were given in Table I. Finally, the posterior mean 
values for the selected four parameters were determined by 
combining the individual posterior distributions for the 
selected rainfall events for the three catchment models. The 
distribution of the calibrated parameters for Alextown 
catchment is presented as histograms and the mean values are 
indicated by a vertical line in Fig. 3. 

As shown in Fig. 3, all parameters have positive skewed 
distributions. For validation purpose the posterior mean values 
of calibrated parameters were used as input for MIKE 
URBAN model simulations for the three study catchments. 

Model validation is the step followed to confirm that the 
model developed for specific rainfall events is capable of 
accurately predicting runoff flow for different rainfall events 
[20]. In this study, the developed models using R were 
validated by comparing its’ simulated mean flow obtained 
from ABC posterior prediction with MIKE URBAN 
simulation outcomes. Figs. 4-6 show example outputs from 
calibrated models for one of the selected events in Alextown, 
Gumbel and Birdlife Park catchments. As seen in Figs. 4-6, 
the calibration results of R show strong agreement with 
observed runoff data and mostly within the upper and lower 
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95% credible intervals. It is also noticeable that MIKE 
URBAN model outcomes are closely comparable to R model 

outcomes, and also falls within the upper and lower 95% 
credible intervals.  

 

 

Fig. 3 Histogram of calibrated parameters for Alextown 
 

 

Fig. 4 Calibration plot of single rainfall event for Alextown catchment 
 

 

Fig. 5 Calibration plot of single rainfall event for Gumbel catchment 
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Fig. 6 Calibration plot of single rainfall event for Birdlife Park catchment 
 

TABLE II 
STATISTICAL VALIDATION OF RUNOFF CALIBRATION RESULT 

Study Sites Rainfall Events CD RMSE  ME 

Alextown 21 - 08 - 2002 0.90 0.015 0.014 

 10 - 12 - 2002 0.91 0.015 0.009 

 26 - 12 - 2002 0.93 0.002 0.003 

 1 - 02 - 2003 0.91 0.004 0.006 

 1 - 03 - 2003 0.91 0.007 0.012 

 7 - 03 - 2003 0.96 0.003 0.004 

 12 - 03 - 2003 0.94 0.005 0.010 

 27 - 04 - 2003 0.90 0.018 0.010 

 24 - 10 - 2003 0.93 0.020 0.027 

 14 - 12 - 2003 0.92 0.013 0.024 

Gumbel 28 - 04 - 2002 0.83 0.002 0.002 

 5 - 05 - 2002 0.92 0.001 0.000 

 2 - 06 - 2002 0.92 0.001 0.001 

 16 - 06 - 2002 0.81 0.002 0.002 

 21 - 09 - 2002 0.84 0.001 0.002 

 13 - 11 - 2002 0.86 0.005 0.004 

 15 - 11 - 2002 0.97 0.002 0.002 

 10 - 12 - 2002 0.92 0.003 0.005 

 13 - 03 - 2003 0.88 0.002 0.001 

 24 - 10 - 2003 0.93 0.004 0.004 

Birdlife Park 28 - 04 - 2002 0.92 0.041 0.039 

 29 - 04 - 2002 0.89 0.020 0.018 

 3 - 05 - 2002 0.93 0.034 0.021 

 4 - 05 - 2002 0.86 0.021 0.023 

 2 - 06 - 2002 0.91 0.009 0.011 

 4 - 06 - 2002 0.93 0.007 0.009 

 27 - 08 - 2002 0.95 0.004 0.008 

 27 - 10 - 2002 0.91 0.017 0.014 

 13 - 11 - 2002 0.90 0.088 0.100 

 27 - 04 - 2003 0.90 0.033 0.050 

CD = coefficient of determination, RMSE = root mean square error, ME = 
maximum error. 

 
For statistical validation of the developed models, selected 

statistical measures were performed for all the observed and 
simulated runoff events and the results are presented in Table 
II. The CD values for the three catchments are close to 1, and 

RMSE and ME values ranges from 0.001 to 0.088 and 0.000 
to 0.050, respectively. Statistical measures obtained are 
graphically presented in the form of Box-Whisker plots in 
Figs. 7-9. As seen in Fig. 7, median CD value falls above 0.90 
for all three catchments. Most of the CD values fall within the 
3rd quartile (corresponds to 75thpercentile) zone for Alextown 
and Birdlife Park catchments, and for Gumbel catchment, falls 
within the1stquartile (corresponds to 25thpercentile) zone. This 
means that the fluctuations in CD values were greater in 
Gumbel than the other catchments and ranges within 0.81 to 1. 
As seen in Figs. 8-9, medians of RMSE and ME are close to 
0.02 for Birdlife Park catchment, and relatively lower for the 
other catchments. The variation is within 0.004 to 0.088. The 
minimum value for both RMSE and ME was found to be 
smaller for Gumbel catchment and fluctuates within 0.001 to 
0.005. The statistical evaluation outcomes suggest that the 
agreement between observed and simulated results obtained 
for flow discharges is appropriate. This highlights that the 
developed automatic calibration framework is capable of 
producing reliable results for all of the rainfall events selected 
for the three catchments. 

 

 

Fig. 7 Plot of CD for study catchments 
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Fig. 8 Plot of RMSE for study catchments 
 

 

Fig. 9 Plot of ME for study catchments 

IV. CONCLUSIONS 

The study presented the development of an automatic 
calibration framework in R software using ABC for urban 
hydrologic modelling. To develop the automatic calibration 
framework, hydrologic and hydraulic models were developed 
in R software and then combined with EasyABC package 
function. The analysis results revealed that the developed 
calibration framework performs well for all rainfall events 
selected at the three study catchments within the upper and 
lower 95% credible intervals. The results are influenced by the 
choice of priors during calibration. Choice of summary 
statistics influences the computational efficiency of ABC 
method and may lead to the source of the ABC error. Hence, 
as typical practice, mean of observed and simulated flow are 
used as lower dimensional summary statistics to capture the 
relevant information in comparing observed and simulated 
flow. For validation of the model, three separate models were 
also developed using MIKE URBAN software. The simulation 
outcomes of the developed model in R were compared with 
MIKE URBAN model outcomes for all the study catchments. 
The graphical comparison showed strong agreement with 
MIKE URBAN simulation results. To judge the accuracy of 
models, statistical measures of simulated and observed results 
were evaluated. The statistical measures showed reasonable 
agreement between observed and simulated flow. For the three 
study catchments, CD, RMSE and ME values were found 
close to 1, 0 and 0, respectively. This suggests that the 

developed automatic calibration framework is a robust 
approach when compared to other classical statistical 
approaches often used in hydrologic modelling. 

From the outcomes of this study, it can be concluded that 
the developed ABC calibration framework is suitable to be 
used with complex hydrologic models where likelihood is 
intractable and/or expensive to compute, and where is it 
straight forward to simulate data from the model. ABC is an 
approximate method and has an additional source of error. 
Specifically, this additional source of error comes from the 
tolerance level. When a small tolerance level is used, this 
additional error is reduced. However, it may be difficult to 
simulate parameter values that yield simulated data which are 
similar to the observed data. Consequently, ABC typically 
suffers from small acceptance rates, which leads to a larger 
computational burden to obtain a reasonable number of 
samples from the ABC posterior. ABC also overcomes the 
shortcomings of tedious trial and error processes in manual 
calibration. Validation results with MIKE URBAN confirmed 
that the developed model can be used as an alternative for 
commercial modelling platforms which seek automatic 
calibration for model calibration and parameter estimation. 
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