Search results for: Network Packet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2816

Search results for: Network Packet

266 Simultaneous HPAM/SDS Injection in Heterogeneous/Layered Models

Authors: M. H. Sedaghat, A. Zamani, S. Morshedi, R. Janamiri, M. Safdari, I. Mahdavi, A. Hosseini, A. Hatampour

Abstract:

Although lots of experiments have been done in enhanced oil recovery, the number of experiments which consider the effects of local and global heterogeneity on efficiency of enhanced oil recovery based on the polymer-surfactant flooding is low and rarely done. In this research, we have done numerous experiments of water flooding and polymer-surfactant flooding on a five spot glass micromodel in different conditions such as different positions of layers. In these experiments, five different micromodels with three different pore structures are designed. Three models with different layer orientation, one homogenous model and one heterogeneous model are designed. In order to import the effect of heterogeneity of porous media, three types of pore structures are distributed accidentally and with equal ratio throughout heterogeneous micromodel network according to random normal distribution. The results show that maximum EOR recovery factor will happen in a situation where the layers are orthogonal to the path of mainstream and the minimum EOR recovery factor will happen in a situation where the model is heterogeneous. This experiments show that in polymer-surfactant flooding, with increase of angles of layers the EOR recovery factor will increase and this recovery factor is strongly affected by local heterogeneity around the injection zone.

Keywords: Layered Reservoir, Micromodel, Local Heterogeneity, Polymer-Surfactant Flooding, Enhanced Oil Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
265 The Design and Analysis of Learning Effects for a Game-based Learning System

Authors: Wernhuar Tarng, Weichian Tsai

Abstract:

The major purpose of this study is to use network and multimedia technologies to build a game-based learning system for junior high school students to apply in learning “World Geography" through the “role-playing" game approaches. This study first investigated the motivation and habits of junior high school students to use the Internet and online games, and then designed a game-based learning system according to situated and game-based learning theories. A teaching experiment was conducted to analyze the learning effectiveness of students on the game-based learning system and the major factors affecting their learning. A questionnaire survey was used to understand the students- attitudes towards game-based learning. The results showed that the game-based learning system can enhance students- learning, but the gender of students and their habits in using the Internet have no significant impact on learning. Game experience has a significant impact on students- learning, and the higher the experience value the better the effectiveness of their learning. The results of questionnaire survey also revealed that the system can increase students- motivation and interest in learning "World Geography".

Keywords: Game-based learning, situated learning, role playing, learning effectiveness, learning motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
264 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran

Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi

Abstract:

Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.

Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
263 Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card

Authors: Meet Shah, Ankita Aditya, Dhruv Bindra, V. S. Omkar, Aashruti Seervi

Abstract:

In today's world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is ‘proof of existence’, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on ‘blockchain’ technology, which is a 'decentralized system'. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to ‘have everything with nothing’. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends.

Keywords: Blockchain, decentralized system, fingerprint impression, identity management, iris scan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
262 Highly Accurate Target Motion Compensation Using Entropy Function Minimization

Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani

Abstract:

One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.

Keywords: ATR, HRRP, motion compensation, SFW, TMP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
261 Mapping SOA and Outsourcing on NEBIC: A Dynamic Capabilities Perspective Approach

Authors: Benazeer Md. Shahzada, Verelst Jan, Van Grembergen Wim, Mannaert Herwig

Abstract:

This article is an extension and a practical application approach of Wheeler-s NEBIC theory (Net Enabled Business Innovation Cycle). NEBIC theory is a new approach in IS research and can be used for dynamic environment related to new technology. Firms can follow the market changes rapidly with support of the IT resources. Flexible firms adapt their market strategies, and respond more quickly to customers changing behaviors. When every leading firm in an industry has access to the same IT resources, the way that these IT resources are managed will determine the competitive advantages or disadvantages of firm. From Dynamic Capabilities Perspective and from newly introduced NEBIC theory by Wheeler, we know that only IT resources cannot deliver customer value but good configuration of those resources can guarantee customer value by choosing the right emerging technology, grasping the economic opportunities through business innovation and growth. We found evidences in literature that SOA (Service Oriented Architecture) is a promising emerging technology which can deliver the desired economic opportunity through modularity, flexibility and loosecoupling. SOA can also help firms to connect in network which can open a new window of opportunity to collaborate in innovation and right kind of outsourcing

Keywords: Absorptive capacity, Dynamic Capability, Netenabled business innovation cycle, Service oriented architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
260 Load Balancing in Heterogeneous P2P Systems using Mobile Agents

Authors: Neeraj Nehra, R. B. Patel, V. K. Bhat

Abstract:

Use of the Internet and the World-Wide-Web (WWW) has become widespread in recent years and mobile agent technology has proliferated at an equally rapid rate. In this scenario load balancing becomes important for P2P systems. Beside P2P systems can be highly heterogeneous, i.e., they may consists of peers that range from old desktops to powerful servers connected to internet through high-bandwidth lines. There are various loads balancing policies came into picture. Primitive one is Message Passing Interface (MPI). Its wide availability and portability make it an attractive choice; however the communication requirements are sometimes inefficient when implementing the primitives provided by MPI. In this scenario we use the concept of mobile agent because Mobile agent (MA) based approach have the merits of high flexibility, efficiency, low network traffic, less communication latency as well as highly asynchronous. In this study we present decentralized load balancing scheme using mobile agent technology in which when a node is overloaded, task migrates to less utilized nodes so as to share the workload. However, the decision of which nodes receive migrating task is made in real-time by defining certain load balancing policies. These policies are executed on PMADE (A Platform for Mobile Agent Distribution and Execution) in decentralized manner using JuxtaNet and various load balancing metrics are discussed.

Keywords: Mobile Agents, Agent host, Agent Submitter, PMADE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
259 In Cognitive Radio the Analysis of Bit-Error- Rate (BER) by using PSO Algorithm

Authors: Shrikrishan Yadav, Akhilesh Saini, Krishna Chandra Roy

Abstract:

The electromagnetic spectrum is a natural resource and hence well-organized usage of the limited natural resources is the necessities for better communication. The present static frequency allocation schemes cannot accommodate demands of the rapidly increasing number of higher data rate services. Therefore, dynamic usage of the spectrum must be distinguished from the static usage to increase the availability of frequency spectrum. Cognitive radio is not a single piece of apparatus but it is a technology that can incorporate components spread across a network. It offers great promise for improving system efficiency, spectrum utilization, more effective applications, reduction in interference and reduced complexity of usage for users. Cognitive radio is aware of its environmental, internal state, and location, and autonomously adjusts its operations to achieve designed objectives. It first senses its spectral environment over a wide frequency band, and then adapts the parameters to maximize spectrum efficiency with high performance. This paper only focuses on the analysis of Bit-Error-Rate in cognitive radio by using Particle Swarm Optimization Algorithm. It is theoretically as well as practically analyzed and interpreted in the sense of advantages and drawbacks and how BER affects the efficiency and performance of the communication system.

Keywords: BER, Cognitive Radio, Environmental Parameters, PSO, Radio spectrum, Transmission Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
258 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
257 The Phatic Function and the Socializing Element of Personal Blogs

Authors: Emelia Noronha, Milind Malshe

Abstract:

The phatic function of communication is a vital element of any conversation. This research paper looks into this function with respect to personal blogs maintained by Indian bloggers. This paper is a study into the phenomenon of phatic communication maintained by bloggers through their blogs. Based on a linguistic analysis of the posts of twenty eight Indian bloggers, writing in English, studied over a period of three years, the study indicates that though the blogging phenomenon is not conversational in the same manner as face-to-face communication, it does make ample provision for feedback that is conversational in nature. Ordinary day to day offline conversations use conventionalized phatic utterances; those on the social media are in a perpetual mode of innovation and experimentation in order to sustain contact with its readers. These innovative methods and means are the focus of this study. Though the personal blogger aims to chronicle his/her personal life through the blog, the socializing function is crucial to these bloggers. In comparison to the western personal blogs which focus on the presentation of the ‘bounded individual self’, we find Indian personal bloggers engage in the presentation of their ‘social selves’. These bloggers yearn to reach out to the readers on the internet and the phatic function serves to initiate, sustain and renew social ties on the blogosphere thereby consolidating the social network of readers and bloggers.

Keywords: Personal blogs, phatic, social-selves, blog readers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
256 Suitable Partner Node Selection and Resource Allocation in Cooperative Wireless Communication Using the Trade-Off Game

Authors: Oluseye A. Adeleke, Mohd. F. M. Salleh

Abstract:

The performance of any cooperative communication system depends largely on the selection of a proper partner. Another important factor to consider is an efficient allocation of resource like power by the source node to help it in forwarding information to the destination. In this paper, we look at the concepts of partner selection and resource (power) allocation for a distributed communication network. A type of non-cooperative game referred to as Trade-Off game is employed so as to jointly consider the utilities of the source and relay nodes, where in this case, the source is the node that requires help with forwarding of its information while the partner is the node that is willing to help in forwarding the source node’s information, but at a price. The approach enables the source node to maximize its utility by selecting a partner node based on (i) the proximity of the partner node to the source and destination nodes, and (ii) the price the partner node will charge for the help being rendered. Our proposed scheme helps the source locate and select the relay nodes at ‘better’ locations and purchase power optimally from them. It also aids the contending relay nodes maximize their own utilities as well by asking proper prices. Our game scheme is seen to converge to unique equilibrium.

Keywords: Cooperative communication, game theory, node, power allocation, trade-off, utility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
255 QoS Improvement Using Intelligent Algorithm under Dynamic Tropical Weather for Earth-Space Satellite Applications

Authors: Joseph S. Ojo, Vincent A. Akpan, Oladayo G. Ajileye, Olalekan L, Ojo

Abstract:

In this paper, the intelligent algorithm (IA) that is capable of adapting to dynamical tropical weather conditions is proposed based on fuzzy logic techniques. The IA effectively interacts with the quality of service (QoS) criteria irrespective of the dynamic tropical weather to achieve improvement in the satellite links. To achieve this, an adaptive network-based fuzzy inference system (ANFIS) has been adopted. The algorithm is capable of interacting with the weather fluctuation to generate appropriate improvement to the satellite QoS for efficient services to the customers. 5-year (2012-2016) rainfall rate of one-minute integration time series data has been used to derive fading based on ITU-R P. 618-12 propagation models. The data are obtained from the measurement undertaken by the Communication Research Group (CRG), Physics Department, Federal University of Technology, Akure, Nigeria. The rain attenuation and signal-to-noise ratio (SNR) were derived for frequency between Ku and V-band and propagation angle with respect to different transmitting power. The simulated results show a substantial reduction in SNR especially for application in the area of digital video broadcast-second generation coding modulation satellite networks.

Keywords: Fuzzy logic, intelligent algorithm, Nigeria, QoS, satellite applications, tropical weather.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
254 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: National development, granite, profitability assessment, ANN models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81
253 Comparative Analysis of Various Multiuser Detection Techniques in SDMA-OFDM System Over the Correlated MIMO Channel Model for IEEE 802.16n

Authors: Susmita Das, Kala Praveen Bagadi

Abstract:

SDMA (Space-Division Multiple Access) is a MIMO (Multiple-Input and Multiple-Output) based wireless communication network architecture which has the potential to significantly increase the spectral efficiency and the system performance. The maximum likelihood (ML) detection provides the optimal performance, but its complexity increases exponentially with the constellation size of modulation and number of users. The QR decomposition (QRD) MUD can be a substitute to ML detection due its low complexity and near optimal performance. The minimum mean-squared-error (MMSE) multiuser detection (MUD) minimises the mean square error (MSE), which may not give guarantee that the BER of the system is also minimum. But the minimum bit error rate (MBER) MUD performs better than the classic MMSE MUD in term of minimum probability of error by directly minimising the BER cost function. Also the MBER MUD is able to support more users than the number of receiving antennas, whereas the rest of MUDs fail in this scenario. In this paper the performance of various MUD techniques is verified for the correlated MIMO channel models based on IEEE 802.16n standard.

Keywords: Multiple input multiple output, multiuser detection, orthogonal frequency division multiplexing, space division multiple access, Bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
252 Automatic Visualization Pipeline Formation for Medical Datasets on Grid Computing Environment

Authors: Aboamama Atahar Ahmed, Muhammad Shafie Abd Latiff, Kamalrulnizam Abu Bakar, Zainul AhmadRajion

Abstract:

Distance visualization of large datasets often takes the direction of remote viewing and zooming techniques of stored static images. However, the continuous increase in the size of datasets and visualization operation causes insufficient performance with traditional desktop computers. Additionally, the visualization techniques such as Isosurface depend on the available resources of the running machine and the size of datasets. Moreover, the continuous demand for powerful computing powers and continuous increase in the size of datasets results an urgent need for a grid computing infrastructure. However, some issues arise in current grid such as resources availability at the client machines which are not sufficient enough to process large datasets. On top of that, different output devices and different network bandwidth between the visualization pipeline components often result output suitable for one machine and not suitable for another. In this paper we investigate how the grid services could be used to support remote visualization of large datasets and to break the constraint of physical co-location of the resources by applying the grid computing technologies. We show our grid enabled architecture to visualize large medical datasets (circa 5 million polygons) for remote interactive visualization on modest resources clients.

Keywords: Visualization, Grid computing, Medical datasets, visualization techniques, thin clients, Globus toolkit, VTK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
251 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
250 Comparison between Turbo Code and Convolutional Product Code (CPC) for Mobile WiMAX

Authors: Ahmed Ebian, Mona Shokair, Kamal Awadalla

Abstract:

Mobile WiMAX is a broadband wireless solution that enables convergence of mobile and fixed broadband networks through a common wide area broadband radio access technology and flexible network architecture. It adopts Orthogonal Frequency Division Multiple Access (OFDMA) for improved multi-path performance in Non-Line-Of-Sight (NLOS) environments. Scalable OFDMA (SOFDMA) is introduced in the IEEE 802e[1]. WIMAX system uses one of different types of channel coding but The mandatory channel coding scheme is based on binary nonrecursive Convolutional Coding (CC). There are other several optional channel coding schemes such as block turbo codes, convolutional turbo codes, and low density parity check (LDPC). In this paper a comparison between the performance of WIMAX using turbo code and using convolutional product code (CPC) [2] is made. Also a combination between them had been done. The CPC gives good results at different SNR values compared to both the turbo system, and the combination between them. For example, at BER equal to 10-2 for 128 subcarriers, the amount of improvement in SNR equals approximately 3 dB higher than turbo code and equals approximately 2dB higher than the combination respectively. Several results are obtained at different modulating schemes (16QAM and 64QAM) and different numbers of sub-carriers (128 and 512).

Keywords: Turbo Code, Convolutional Product Code (CPC), Convolutional Product Code (CPC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
249 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
248 SPA-VNDN: Enhanced Smart Parking Application by Vehicular Named Data Networking

Authors: Bassma Aldahlan, Zongming Fei

Abstract:

Recently, there is a great interest in smart parking application. Theses applications are enhanced by a vehicular ad-hoc network, which helps drivers find and reserve satiable packing spaces for a period of time ahead of time. Named Data Networking (NDN) is a future Internet architecture that benefits vehicular ad-hoc networks because of its clean-slate design and pure communication model. In this paper, we proposed an NDN-based frame-work for smart parking that involved a fog computing architecture. The proposed application had two main directions: First, we allowed drivers to query the number of parking spaces in a particular parking lot. Second, we introduced a technique that enabled drivers to make intelligent reservations before their arrival time. We also introduced a “push-based” model supporting the NDN-based framework for smart parking applications. To evaluate the proposed solution’s performance, we analyzed the function for finding parking lots with available parking spaces and the function for reserving a parking space. Our system showed high performance results in terms of response time and push overhead. The proposed reservation application performed better than the baseline approach.

Keywords: Cloud Computing, Vehicular Named Data Networking, Smart Parking Applications, Fog Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225
247 Context Aware Anomaly Behavior Analysis for Smart Home Systems

Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu

Abstract:

The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.

Keywords: Internet of Things, network security, context awareness, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
246 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse

Authors: Sheena Christabel Pravin, M. Palanivelan

Abstract:

Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.

Keywords: Bilingual, children who stutter, children with language impairment, Hidden Markov Models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
245 Geovisualization of Tourist Activity Travel Patterns Using 3D GIS: An Empirical Study of Tamsui, Taiwan

Authors: Meng-Lung Lin, Chien-Min Chu, Chung-Hung Tsai, Chih-Cheng Chen, Chen-Yuan Chen

Abstract:

The study of tourist activities and the mapping of their routes in space and time has become an important issue in tourism management. Here we represent space-time paths for the tourism industry by visualizing individual tourist activities and the paths followed using a 3D Geographic Information System (GIS). Considerable attention has been devoted to the measurement of accessibility to shopping, eating, walking and other services at the tourist destination. I turns out that GIS is a useful tool for studying the spatial behaviors of tourists in the area. The value of GIS is especially advantageous for space-time potential path area measures, especially for the accurate visualization of possible paths through existing city road networks. This study seeks to apply space-time concepts with a detailed street network map obtained from Google Maps to measure tourist paths both spatially and temporally. These paths are further determined based on data obtained from map questionnaires regarding the trip activities of 40 individuals. The analysis of the data makes it possible to determining the locations of the more popular paths. The results can be visualized using 3D GIS to show the areas and potential activity opportunities accessible to tourists during their travel time.

Keywords: Tourist activity analysis, space-time path, GIS, geovisualization, activity-travel pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
244 Intelligent Temperature Controller for Water-Bath System

Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar

Abstract:

Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.

To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.

It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.

Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5547
243 Finding Pareto Optimal Front for the Multi-Mode Time, Cost Quality Trade-off in Project Scheduling

Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo

Abstract:

Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.

Keywords: FastPGA, Multi-Execution Activity Mode, ParetoOptimality, Project Scheduling, Time-Cost-Quality Trade-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
242 Distributed Generator Placement for Loss Reduction and Improvement in Reliability

Authors: Priyanka Paliwal, N.P. Patidar

Abstract:

Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.

Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
241 Development of Software Complex for Digitalization of Enterprise Activities

Authors: G. T. Balakayeva, K. K. Nurlybayeva, M. B. Zhanuzakov

Abstract:

In the proposed work, we have developed software and designed a software architecture for the implementation of enterprise business processes. The proposed software has a multi-level architecture using a domain-specific tool. The developed architecture is a guarantor of the availability, reliability and security of the system and the implementation of business processes, which are the basis for effective enterprise management. Automating business processes, automating the algorithmic stages of an enterprise, developing optimal algorithms for managing activities, controlling and monitoring, reducing risks and improving results help organizations achieve strategic goals quickly and efficiently. The software described in this article can connect to the corporate information system via two methods: a desktop client and a web client. With an appeal to the application server, the desktop client program connects to the information system on the company's work PCs over a local network. Outside the organization, the user can interact with the information system via a web browser, which acts as a web client and connects to a web server. The developed software consists of several integrated modules that share resources and interact with each other through an API. The following technology stack was used during development: Node js, React js, MongoDB, Ngnix, Cloud Technologies, Python.

Keywords: Algorithms, document processing, automation, integrated modules, software architecture, software design, information system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205
240 Secure Low-Bandwidth Video Streaming through Reliable Multipath Propagation in MANETs

Authors: S. Mohideen Badhusha, K. Duraiswamy

Abstract:

Most of the existing video streaming protocols provide video services without considering security aspects in decentralized mobile ad-hoc networks. The security policies adapted to the currently existing non-streaming protocols, do not comply with the live video streaming protocols resulting in considerable vulnerability, high bandwidth consumption and unreliability which cause severe security threats, low bandwidth and error prone transmission respectively in video streaming applications. Therefore a synergized methodology is required to reduce vulnerability and bandwidth consumption, and enhance reliability in the video streaming applications in MANET. To ensure the security measures with reduced bandwidth consumption and improve reliability of the video streaming applications, a Secure Low-bandwidth Video Streaming through Reliable Multipath Propagation (SLVRMP) protocol architecture has been proposed by incorporating the two algorithms namely Secure Low-bandwidth Video Streaming Algorithm and Reliable Secure Multipath Propagation Algorithm using Layered Video Coding in non-overlapping zone routing network topology. The performances of the proposed system are compared to those of the other existing secure multipath protocols Sec-MR, SPREAD using NS 2.34 and the simulation results show that the performances of the proposed system get considerably improved.

Keywords: Bandwidth consumption, layered video coding, multipath propagation, reliability, security threats, video streaming applications, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
239 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education

Authors: Yong W. Foo, Lai M. Tang

Abstract:

Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.

Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14
238 Event Information Extraction System (EIEE): FSM vs HMM

Authors: Shaukat Wasi, Zubair A. Shaikh, Sajid Qasmi, Hussain Sachwani, Rehman Lalani, Aamir Chagani

Abstract:

Automatic Extraction of Event information from social text stream (emails, social network sites, blogs etc) is a vital requirement for many applications like Event Planning and Management systems and security applications. The key information components needed from Event related text are Event title, location, participants, date and time. Emails have very unique distinctions over other social text streams from the perspective of layout and format and conversation style and are the most commonly used communication channel for broadcasting and planning events. Therefore we have chosen emails as our dataset. In our work, we have employed two statistical NLP methods, named as Finite State Machines (FSM) and Hidden Markov Model (HMM) for the extraction of event related contextual information. An application has been developed providing a comparison among the two methods over the event extraction task. It comprises of two modules, one for each method, and works for both bulk as well as direct user input. The results are evaluated using Precision, Recall and F-Score. Experiments show that both methods produce high performance and accuracy, however HMM was good enough over Title extraction and FSM proved to be better for Venue, Date, and time.

Keywords: Emails, Event Extraction, Event Detection, Finite state machines, Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
237 Utilizing Biological Models to Determine the Recruitment of the Irish Republican Army

Authors: Erika Ann Schaub, Christian J Darken

Abstract:

Sociological models (e.g., social network analysis, small-group dynamic and gang models) have historically been used to predict the behavior of terrorist groups. However, they may not be the most appropriate method for understanding the behavior of terrorist organizations because the models were not initially intended to incorporate violent behavior of its subjects. Rather, models that incorporate life and death competition between subjects, i.e., models utilized by scientists to examine the behavior of wildlife populations, may provide a more accurate analysis. This paper suggests the use of biological models to attain a more robust method for understanding the behavior of terrorist organizations as compared to traditional methods. This study also describes how a biological population model incorporating predator-prey behavior factors can predict terrorist organizational recruitment behavior for the purpose of understanding the factors that govern the growth and decline of terrorist organizations. The Lotka-Volterra, a biological model that is based on a predator-prey relationship, is applied to a highly suggestive case study, that of the Irish Republican Army. This case study illuminates how a biological model can be utilized to understand the actions of a terrorist organization.

Keywords: Biological Models, Lotka-Volterra Predator-Prey Model, Terrorist Organizational Behavior, Terrorist Recruitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523