
 

 
Abstract—Artificial Intelligence (AI), particularly the usage of 

deep neural networks for hierarchical representations from data, has 
found numerous complex applications across various domains, 
including computer vision, robotics, autonomous vehicles, and other 
scientific fields. However, their inherent “black box” nature can 
sometimes make it challenging for early researchers or school students 
of various levels to comprehend and trust the results they produce. 
Consequently, there has been a growing demand for reliable 
visualization tools in engineering and science education to help 
learners understand, trust, and explain a deep learning network. This 
has led to a notable emphasis on the visualization of AI in the research 
community in recent years. AI visualization tools are increasingly 
being adopted to significantly improve the comprehension of complex 
topics in deep learning. This paper presents an approach to empower 
students to actively explore the inner workings of deep neural networks 
by integrating the student-centered learning approach of flipped 
classroom models with the investigative capabilities of AI 
visualization tools, namely, the TensorFlow Playground, the Local 
Interpretable Model-agnostic Explanations (LIME), and the SHapley 
Additive exPlanations (SHAP), for delivering an AI education 
curriculum. Integrating these two factors is crucial for fostering 
ownership, responsibility, and critical thinking skills in the age of AI. 
 

Keywords—Deep Learning, Explainable AI, AI Visualization, 
Representation Learning.  

I. INTRODUCTION 

I, in particular, Deep Learning (DL), has become the most 
widely used computational approach due to its impressive 

results in solving complex problems in diverse fields. DL refers 
specifically to the use of neural networks with multiple layers, 
where each layer automatically learns and extracts complex 
features from the data. This is also known as representation 
learning, whereby the primary goal is to capture essential 
patterns or representations within the data. Representation 
learning inside the neural networks is organized hierarchically, 
with features extracted at increased abstraction at each layer. 
The simpler patterns learned at lower levels lay the foundation 
for more abstract and complex patterns learned at the higher 
levels. At the networks’ final layers, the data’s essential 
characteristics are captured and formatted in a way suitable for 
classification, clustering, or other Machine Learning (ML) 
predictions.  

Among the types of DL networks, convolutional neural 
networks (CNNs) stand out as one of the most extensively 
employed DL models. The CNN architecture often serves as a 
foundational framework for early researchers and students to 
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understand the complexity of DL networks. The CNN model 
presents an excellent learning framework for various DL 
perspectives, such as network architecture, tensor formulation 
and manipulation, backpropagation computation, and 
hierarchical representation. As information flows through the 
networks, each layer automatically learns and extracts complex 
features from the data by optimizing the network parameters. 
This optimization is achieved by minimizing an objective 
function, utilizing backpropagation, and being guided by 
gradient descent algorithms. The iterative adaptive learning 
process gradually converges, creating representations that 
prove effective for the given task. 

However, DL models are commonly characterized as “black 
box” models as the inner workings of the models lack 
transparency and are challenging to comprehend. This inherent 
lack of transparency poses a significant obstacle for a novice 
student to understand the intricacies of DL networks. The 
complex feature maps and internal representations are 
especially hard to visualize. Undoubtedly, this would hinder the 
student’s ability to effectively grasp the underlying principles 
or trust the results they produce [1]. Overcoming the steep 
learning curve of AI requires a student-centered learning 
approach in the education curriculum, combining theoretical 
knowledge with practical sessions that leverage visualization 
and interactivity tools to offer a more immersive and 
experiential understanding of complex DL concepts and AI [2]. 

Wright argues that a student-centered learning approach that 
actively involves students leads to increased ownership of their 
learning process and enhanced engagement [3]. Sewagegn and 
Diale [4] put forward that when students feel empowered 
through autonomy and supportive feedback, they demonstrate 
higher levels of engagement in classroom activities and show 
greater academic achievement.  

This paper presents a flipped classroom model integrating 
visualization tools and Explainable AI (XAI) techniques, 
specifically, the TensorFlow Playground, the LIME [5], and the 
SHAP [6] as core educational resources for exploring and 
demystifying complex DL models. TensorFlow Playground 
provides an interactive web-based platform designed to 
facilitate a hands-on understanding of DL. LIME and SHAP 
serve as XAI methods that reveal insights into how DL models 
arrive at their predictions, offering a more transparent view of 
these typically opaque processes. Collectively, the tools support 
learners in actively engaging with AI concepts and deepening 
their comprehension of DL’s decision-making mechanics.  
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The rest of the paper is structured as follows: Section II 
provides a foundational understanding of the CNN model. 
Section III offers an overview of the selected tools and their 
relevance in AI education. A comparative analysis of the 
selected tools, highlighting their strengths, weaknesses, and 
unique features, is discussed in Section IV. Section V describes 
a proposed flip-classroom model integrating with the AI 
visualization tools. The latest trends and advancements in AI 
education are explored in Section VI. Lastly, Section VII 
concludes and summarizes the key insights and 
recommendations. 

II. CNN MODEL ARCHITECTURE 

There are many types of DL networks, such as Recursive 
Neural Networks (RNNs), Gated Recurrent Units (GRUs), 
Long Short-Term Memory (LSTM) networks, Deep Neural 
Networks (DNNs), CNNs, auto-encoders, and Generative 
Adversarial Networks (GANs). This paper focuses on the CNN, 
which is the most widely employed model [7] in the field of 
computer vision. 

Several CNN models have been developed for various 
computer vision tasks. The commonly known ones are 
AlexNet, Residual Network (ResNet), GoogLeNet (Inception), 
and DenseNet, to name a few. The CNN architecture has 
multiple layers, each consisting of interconnected nodes. The 

nodes receive input data and perform computations using 
activation functions before passing the results to the next layer 
[8]. As data flow from the input to the output layer, the 
connection weights and biases (also known as parameters) 
associated with the node connections are learned. The 
activation functions, such as the ReLU (Rectified Linear Unit), 
sigmoid, and tanh, introduce non-linearity to the network, 
allowing it to learn complex patterns. The parameters are 
adjusted using the backpropagation algorithm, which consists 
of forward and backward passes during training. Gradients of 
the loss with respect to the weights are computed using a loss 
function, which measures the difference between the 
predictions at the output and the actual target values. This 
information is used to update the parameters in the backward 
direction, guided by optimization algorithms such as gradient 
descent. This process is repeated until this loss is minimized or 
a state of convergence is achieved where further parameter 
adjustments do not contribute to the model’s performance. 

Fig. 1 shows a CNN architecture, distinguished by its highly 
efficient and organized structure, characterized by several 
layers: the input layer, the convolutional layers, the pooling 
layers, the flattening layers, the fully connected layers, and the 
output layer; and key components: activation functions, loss 
functions, backpropagation, optimization algorithms, and 
regularization. 

 

 

Fig. 1 The CNN Architecture 
 

A. Input Layer 

The input layer of a CNN typically comprises an image or 
raw pixel values, expressed as a three-dimensional matrix 𝑚 x 
𝑚 x 𝑟, where 𝑚 denotes the height and the width (equal) and 𝑟 
denotes the depth, also known as the channel number. For a 
color (RGB) image, 𝑟 is equal to three.  

B. Convolutional Layers 

The convolutional layers are responsible for extracting 
hierarchical representations of the input. Each layer consists of 
several kernels (filters) denoted by k. Like the input image, 
filters have three dimensions, n x n x q, where n < m and q ≤ r. 
Specifically, filters contain the weights, 𝑊௞ and biases, 𝑏௞ 
(parameters) of the local connections. The values (weights) of 
the filters are randomly initialized and adjusted at each training 
epoch, attempting to detect patterns and features from the input 
image. Feature extraction is achieved by sliding the filters over 
the input data (image) and convolving to produce k feature 

maps, ℎ௞ with a size of (m- n+1) at the convolutional-layer 
output. The feature maps, ℎ௞, are calculated based on a dot 
product between its input (image) and the weights (filter), 
where the results are then subjected to the activation function, 
𝑓, expressed in (1) [7]: 

  
ℎ௞ ൌ 𝑓ሺ𝑊௞ ∗ 𝑥 ൅ 𝑏௞ሻ       (1) 

 
where 𝑊௞ and 𝑏௞ are the weights and biases, respectively, and 
𝑓 is the activation function. 

C. ReLU Layer - Activation Function 

The purpose of activation functions is to introduce non-
linearity into the model. These functions are applied in the 
convolutional and fully connected layers, allowing the model to 
learn more complex features. Examples of activation functions 
are the Sigmoid, Tanh, and ReLU functions. The ReLU 
function represented in (2) is most frequently used in CNN. It 
takes the values of x and converts them to positive numbers. 
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𝑓ሺ𝑥ሻ ൌ max ሺ0, 𝑥ሻ        (2) 

D. Pooling Layers 

This layer is responsible for down-sampling every feature 
map. The objective of the pooling layer is to accelerate the 
training process and avoid overfitting by reducing the 
parameters. There are several pooling techniques, such as 
average, min, or max pooling. These techniques create smaller 
feature maps while maintaining most of the dominant 
information. 

E. Flattening Layer 

The flattening layer is the layer before the fully connected 
layers. It is tasked with transforming the preceding layers into 
a one-dimensional vector, preparing it for fully connected 
layers. 

F. Fully Connected Layers 

After flattening, the fully connected layers take the input 
(vector) from the feature maps created in the last convolutional 
or pooling layer and pass it to fully connected conventional 
neural network layers to make predictions. 

G. Output Layer 

This layer consists of nodes corresponding to the number of 
classes where the final predictions are made based on the 
learned features from the previous layers. 

H. Loss Functions 

Loss functions are applied at the output to compute the 
predicted error generated across the training samples in the 
CNN model. The predicted error is the difference between the 
predicted output and target values. 

I. Backpropagation, Optimization Algorithms, Learning 
Rate and Regularization 

Backpropagation is a learning algorithm commonly used in 
neural network training to improve the network’s accuracy by 
minimizing the error between the predicted and actual outputs. 
Backpropagation calculates the gradient of the loss function 
with respect to the network parameters. Based on the obtained 
error, optimization algorithms such as Gradient Descent and 
Adam are used to adjust the parameters to reduce the error in 
the reverse direction of the gradient (backward pass). The 
learning rate is a tunable hyperparameter that determines the 
magnitude of adjustments made. Regularization techniques, 
such as Dropout and L1 and L2 Regularization, are often 
employed to prevent overfitting and improve the network’s 
generalization ability. 

III. OVERVIEW OF SELECTED TOOLS IN AI EDUCATION 

DL can be challenging for students grappling with the depth 
of concepts such as CNN architecture, activation functions, and 
optimization. In addition, the “black box” CNN, with its 
complex connectivity of neurons and calculations, can pose 
significant learning challenges for novice learners. Specifically, 
the complex feature maps and internal representations are hard 
to visualize, hindering the student’s grasp of the underlying 
principles. XAI techniques as ML visualization tools can 
address this challenge by providing a detailed exploration of the 
design to shed light on the intricate workings of CNNs. In this 
section, we present an overview of the XAI techniques, in 
particular, the TensorFlow Playground, the LIME, and the 
SHAP, for uncovering the “black box” decision-making 
processes of CNNs in ImageNet classification.  

 

 

Fig. 2 The TensorFlow Playground Web Interface 
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A. TensorFlow Playground 

The TensorFlow Playground [8] is an open-source web-
based interactive platform developed by Google that allows 
users to experiment visually with neural networks. As a tool for 
introducing the fundamental concepts of neural networks, its 
graphical interface allows for an interactive learning 
experience. It uses visual representation to show how neurons 
are connected, how weights, biases, and activation functions 
interact, and how information flows through the network. The 
tool provides an intuitive way to adjust parameters such as the 
number of hidden layers, the number of neurons in each layer, 
and other hyperparameter settings to see how they affect the 
training of a neural network. Students can receive real-time 

visual feedback on how the model identifies patterns from data, 
which makes learning more engaging and effective. Figs. 2 and 
3 illustrate the TensorFlow Playground’s high degree of 
interactivity and configurability. Fig. 2 shows the visually 
intuitive interface of the tool. 

Two problem types are presented: regression and 
classification. Figs. 3 (a)-(d) show four datasets for the 
classification problems at different levels of complexity. In 
general, orange shows negative values while blue shows 
positive values. The distinct colored dots in the dataset 
represent a binary classification problem, such as Class A and 
B. The objective of the tools is to generate a neural network 
with appropriate architecture and hyperparameters to separate 
the dots belonging to Class A from those belonging to Class B. 

 

 

(a) Dataset 1                  (b) Dataset 2 
 

  

(c) Dataset 3                  (d) Dataset 4 

Fig. 3 Datasets with Binary Classification Problems 
 

The dataset can be refreshed at the click of the ‘Generate’ 
button and allows for incorporating noise levels up to 50%, 
splitting into various ratios of training and testing subsets, and 

configuring different batch sizes. All these adjustments can be 
made using the intuitive slider interface, located under the 
'DATA' column, as depicted on the left of Fig. 2. 
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The visual representation located under the ‘FEATURES’ 
and ‘HIDDEN LAYER’ columns in Fig. 2 illustrates a network 
architecture that can be used to demonstrate how neurons are 
connected and how information flows through the network. The 
network components, such as the input layers, hidden layers, 
and output layers and their respective neurons, can be modified 
through the respective + and – icons near the top of the website. 
The impact of these changes on model behavior can be instantly 
observed in the network’s capacity to capture intricate patterns 
within the input data. As alterations are made using the 
provided icons, the subsequent modifications in the network’s 
structure dynamically shape its ability to learn and generalize, 
providing an interactive and insightful platform for exploring 
the nuances of neural network design. The model’s ability to 
capture non-linear patterns can be demonstrated by selecting 
various activation functions and observing how they influence 
the network’s performance. 

The importance of hyperparameter tuning, such as the 
learning rate, batch size, regularization, and regularization rate, 
can be experimented with different values to observe how these 
changes affect the model’s convergence and accuracy. Using 
the tool’s visual representations, network training can be paused 
to explain backpropagation, how weights are updated during 
optimization, and how the training and testing loss decreases 
over time as the model learns. The weights update can be 
explained through the colored connections, where blue shows 
that the network is assigning a positive weight and orange a 
negative weight, with the thickness of the connection 
representing more positive or negative values. How well the 
network predicts can be visualized at the output through the 
background color covering the orange and blue dots. The 
color’s intensity shows how confident that prediction is. 

The concept of overfitting and how it can be mitigated can 
be investigated by applying L1 or L2 regularization techniques. 
Learners can also experiment with dropouts by removing 
neurons or hidden layers and then observe the impact of 
regularization on the model’s generalization ability. 

In summary, the TensorFlow Playground can be effectively 
used for AI education in introducing the basic concepts of 
neural networks. 

B. Local Interpretable Model-Agnostic Explanations 

LIME addresses this interpretability gap by offering local 
explanations providing insights into why a specific image was 
classified in a particular way. It employs a model-agnostic 
strategy, creating locally accurate interpretations by training a 
straightforward interpretable model, such as linear regression, 
on perturbed samples centered around the specific instance of 
interest. This involves introducing variations to the input data 
and examining the resulting alterations in the model’s 
predictions [5]. In the image classification task, LIME primarily 
provides local interpretability by generating explanations for 
individual predictions on local super pixel regions of specific 
images. It perturbs the input image to create a local surrogate 
model that approximates the behavior of the black-box model 
for that particular instance [9]. 

LIME’s methodology for image classification involves 

several processes. First, it chooses an image for interpretation. 
This instance will serve as the focal point for generating local 
explanations. Next, it introduces small and controlled 
perturbations to the selected image to create a dataset of slightly 
modified versions. Such image perturbations could include 
changes in pixel values, rotations, or other transformations. 
LIME then feeds the perturbed images, along with the original, 
through CNN to obtain predictions. The model’s outputs for 
each perturbed image are then recorded. The subsequent step is 
to fit an interpretable, often linear, model to the perturbed 
instances and their corresponding model predictions. This 
surrogate model approximates the CNN’s behavior within the 
chosen image’s local neighborhood. The final step is to 
generate an explanation by analyzing the coefficients of the 
surrogate model to understand the influence of different 
features (pixels) on the model’s prediction for the original 
image. The advantages of LIME for Image Classification lie in 
such local interpretability capability. This makes LIME excel 
in providing detailed explanations for individual image 
predictions. This local interpretability is valuable for 
understanding model decisions on a case-by-case basis. 

LIME can be applied to any black-box model as a model-
agnostic approach, making it versatile for interpreting a wide 
range of CNN architectures. The interpretable surrogate model 
generated by LIME, often a linear regression model, offers 
user-friendly explanations that are easy to understand, even for 
non-experts. By revealing the contribution of different pixels to 
the model’s decision, LIME aids in making the decision-
making process of CNNs more transparent and interpretable. 

To illustrate how LIME works using an example, we 
consider Figs. 4 (b)-(d), which show the results of applying 
LIME processes to the original image shown in Fig. 4 (a). This 
color image consists of two main objects: a cat and a mouse.  

Here, we apply LIME on a standard InceptionV3 pre-trained 
model for illustration purposes. Fig. 4 (b) shows the generated 
explanation as super pixels of the predicted class having the 
most positive weight values with the rest of the pixels excluded. 
In contrast, Fig. 4 (c) shows the predicted super pixels together 
with the rest of the original pixels. The explanation weights are 
shown as a heatmap for visualization purposes in Fig. 4 (d). 
These figures show that from a model’s output prediction, we 
can fit them into an interpretable model. This surrogate model 
approximates the CNN behavior within the local neighborhood 
of the chosen image. To generate an explanation of the model, 
we need to analyze the coefficients of the surrogate model to 
understand the influence of different features (pixels) on the 
model’s prediction for the original image. In this example, the 
local interpretability of the cat’s head and surrounding fur 
explains the successful classification prediction of the model. 

C. Shapley Additive Explanations 

SHAP employs principles from cooperative game theory 
principles to equitably assign the contribution of each feature to 
the model’s output. It calculates the average contribution of 
each feature considering all conceivable combinations [6]. 
SHAP offers a dual capability in image classification by 
providing local and global interpretability [9]. The local 
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interpretability explanations can be obtained for individual 
image predictions, while global interpretability provides 
insights into feature importance across the entire dataset. The 
Shapley values, which represent the average contribution of 
each feature (pixel) to the model’s output, allow for a more 

holistic understanding of the importance of different image 
regions. These values can be computed for individual 
predictions, offering insights into local interpretability or 
averaged across the complete dataset, thereby providing a 
broader perspective on global interpretability [10]. 

 

 

Fig. 4 (a) Input image          Fig. 4 (b) Super pixel outline 
 

 

Fig. 4 (c) Image with Super pixel            Fig. 4 (d) Heatmap 
 

SHAP works by first establishing a background dataset 
representing a range of images similar to the dataset used to 
train the CNN. This dataset serves as a reference to compute 
feature importance. This technique then calculates Shapley 
values, which represent the average contribution of each pixel 
to the model’s output, using the background dataset and the 
CNN model. This involves evaluating the model’s prediction 
for all possible combinations of features. Then, it applies SHAP 
values to explain the prediction of a specific image. The 
positive or negative SHAP values assigned to each pixel 
indicate its influence on the model’s decision process. In the 
final step, we can visualize the SHAP values by highlighting 
the regions of the image that significantly contribute to the 
model’s output. This can be done using heatmaps or other 
visualization techniques. 

To illustrate how SHAP works, we consider Figs. 5 (a) and 
(b), which show the results of applying SHAP processes to the 
original image consisting of one main object, namely a great 

grey owl. Here, SHAP is applied to a standard RESNET50 pre-
trained model for illustration purposes. The four generated 
explanations corresponding to the top four predicted classes 
with the most positive values are shown as super pixels, with 
the rest of the pixels blurred in Fig. 5 (a). The explanations with 
finer details generated are shown in Fig. 5 (b). These figures 
show that from a model’s output prediction, we can use the 
SHAP values to explain the prediction of a specific image. The 
positive or negative SHAP values assigned to each pixel 
indicate its influence on the model’s decision. In this image 
example, the top four predicted classes are Great Grey owl, 
Peacock, Ostrich, and Prairie Chicken, respectively. The most 
important feature for the correct classification results is the 
“big, rounded eyes and eyelids” over the bird’s head, 
highlighted as red super pixels. These features learned provide 
a crucial explanation for the correct classification result of the 
CNN network model. 
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IV. COMPARATIVE ANALYSIS AND RECOMMENDATIONS 

LIME emerges as a valuable tool for shedding light on the 
black-box nature of CNNs in image classification tasks [9]. Its 
ability to provide local, interpretable explanations makes it a 

practical choice for understanding model predictions on 
individual images. However, LIME can be computationally 
expensive, especially when dealing with high-dimensional data 
like images [5]. It may require generating a substantial number 
of perturbed samples for accurate interpretation [9]. 

 

 

Fig. 5 (a) Four classes and their respective generated explanations with the most positive values shown as super pixels 
 

 

Fig. 5 (b) The red super pixels highlighting the most important feature for the correct classification results: “big, rounded eyes and eyelids” 
over the bird’s head 

 
Regarding parameter tuning, the choice of parameters, such 

as the number of perturbed samples and the complexity of the 
surrogate model, can impact the quality of LIME explanations. 
Hence, careful tuning is essential for optimal results. In the final 
analysis, LIME assumes that the decision boundary is locally 
linear, which might not always hold true. Students should be 
aware of the potential limitations of the local approximation 
provided by the surrogate model. 

Similar to LIME, SHAP values can be computationally 
expensive, especially for complex models and large datasets 
[11]. However, approximation algorithms such as FAST SHAP 
[11] and TreeSHAP for tree-based models can be employed to 
mitigate computational costs. In addition, interpreting and 
visualizing SHAP values for images can be challenging due to 
the high dimensionality of pixel data. Hence, effective 
visualization techniques are crucial for making the results 
accessible and understandable. In terms of its dependency on 
model properties, while SHAP is model-agnostic, its efficiency 
and accuracy can vary based on the model’s properties. It 
performs well with models that exhibit certain characteristics, 
such as additivity [4]. 

In applying these techniques during class, one should be 
mindful of the computational cost and the assumptions inherent 

in LIME’s methodology and SHAP. While LIME offers a 
promising avenue for bridging the gap between complex CNNs 
and human interpretability in image classification scenarios, 
SHAP provides both local and global interpretability, along 
with fair feature attribution, which positions SHAP as a 
valuable asset in the quest for transparent and interpretable ML 
models. In an ever-evolving deep learning domain, SHAP 
offers a principled approach to understanding the intricate 
decisions made by CNNs in the realm of image classification. 

V. FLIP-CLASSROOM MODEL WITH AI VISUALIZATION TOOLS 

FOR DEEP LEARNING 

This paper proposed a flipped classroom model for 
delivering an AI education curriculum due to its well-supported 
student-centered learning approach. Structurally, the flipped 
classroom model fosters active learning activities, which 
increase ownership and responsibility for learning, leading to 
greater student engagement [12]. Naik [13] highlighted the 
model’s ability to promote learner autonomy, critical thinking, 
and self-directed learning through active engagement and 
collaborative activities. Estrada et al. [14] argue that providing 
students with a sense of control and autonomy can increase 
student engagement, interest, and, ultimately, better learning 
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outcomes. Zainuddin and Perera’s study [15] reveals that the 
model enhances student motivation and learning gains by 
fostering ownership and responsibility for the learning process 
through active engagement and personalized learning 
opportunities.  

In the proposed flipped classroom model, the investigative 
nature of TensorFlow Playground, LIME, and SHAP is 
leveraged to empower students to delve into the inner workings 
of AI models. The tools’ powerful interactive and visualization 
features allow for exploring the internal patterns of the black-
box models. These visualization tools can explain the 
interpretation of the model’s decision-making process and how 
it derives the filters activated by images in various layers. The 
increased interpretability of the model can significantly 
improve learning and trust in the model and its application in 
the real world.  

A. Module Description and Learning Outcomes 

In the proposed ‘Flip-Classroom Model with AI 
Visualization Tools for Deep Learning,’ students delve into the 
foundational theory of data-driven learning and explore various 
state-of-the-art deep learning models. The module extensively 
covers cutting-edge methods, including CNNs, recurrent neural 
networks, transformers, GANs, and reinforcement learning. 
Emphasis is placed on a flipped classroom approach, 
empowering students to actively engage with the content 
through pre-class materials. The AI visualization and XAI tools 
are introduced to enhance comprehension. Students participate 
in collaborative activities, discussions, and hands-on exercises 
during classroom sessions, fostering a deeper understanding of 
the deep learning concepts. The module concludes with 
implementing deep learning models, enabling practical 
application in real-world scenarios. 

B. Module Learning Outcomes 

The module learning outcomes include analyzing the inner 
workings of deep learning models to understand model 
behavior, interpreting how DNNs make predictions through 
XAI tools, applying XAI techniques to analyze CNN, RNN, 
and GAN architectures, critically evaluating different XAI 
techniques to identify the most appropriate method for 
explaining and interpreting real-world implementation of DL 
models. 

C. Pre-class Activities (Online Resources) 

The pre-class activities include asynchronous online video 
lectures introducing the basic concepts of CNNs, RNNs, and 
GANs. Interactive tutorials are proposed to guide students 
through basic DNN training using TensorFlow Playground. 
Additional reading materials, such as articles or curated blog 
posts introducing XAI, LIME, and SHAP, are also provided. 

D. In-class Activities (Hands-on Session) 

For in-class activities, a warm-up exercise is designed for 
students to revisit the TensorFlow Playground trained model 
they explored at home. Subsequently, students are divided into 
groups for the first activity. In this activity, groups are assigned 
a pre-trained CNN model. Using LIME, students generate 

visual explanations for the model’s predictions on specific 
images. The instructor explains how these tools enable 
exploring and discovering hidden patterns within DNNs. 
Students are given time to discuss and compare the 
interpretations within their groups while also engaging with the 
materials at their own pace, pausing or re-reading as needed. 
The instructor reinforces learning by clarifying concepts, 
addressing misunderstandings, and facilitating deeper material 
exploration. 

Another in-class activity is designed to introduce the GAN. 
Students explore GAN utilizing SHAP to visualize the internal 
representations used by the GANs to generate outputs. In their 
respective groups, students discuss the challenges of explaining 
how GANs make decisions or why they generate specific 
outputs. After gaining a foundational understanding, learners 
can then brainstorm potential applications of GANs and explore 
innovative ways to implement them. By allowing learners 
greater autonomy over their learning pace and engaging them 
in activities that promote higher-order thinking skills, 
instructors create a more learner-centered environment. 
Personalized guidance can be offered to those needing extra 
support, helping to ensure all learners have a strong grasp of 
complex concepts and develop the competency to apply these 
skills within diverse and complex applications. 

E. Class Discussion 

A group discussion is proposed focusing on comparing and 
contrasting the effectiveness of LIME and SHAP in their 
application to specific tasks. The discussion could also focus on 
analyzing the limitations of XAI tools and the importance of 
critical interpretation. To develop critical thinking skills, a 
student debate is proposed on the ethical implications of XAI in 
applications like facial recognition.  

F. Evaluation 

A pre-class quiz is designed to assess understanding of core 
concepts introduced in video lectures and resources. At the end 
of the class, students are required to individually submit a 
reflection report summarizing their XAI exploration findings 
and key learning points on the class discussion. 

The proposed flipped classroom model integrating XAI tools 
can be easily adapted to other DL topics. The key is choosing 
the XAI tools appropriate for the specific DNN architecture and 
available resources. 

VI. FUTURE DIRECTION 

This research will continue with plans to conduct a study to 
examine the effects of the flipped classroom strategy. The 
students will be divided into two groups: an experimental 
flipped classroom group and a control group. The experimental 
group shall be taught the concept of DL via a flipped classroom, 
whereas the control group taught via the traditional lecture-
tutorial-lab strategy. Both quantitative and qualitative 
approaches will be utilized in the experiments. 

As the landscape of AI education continues to evolve, there 
is a need to delve into the exploration and synthetization of 
advanced tools, technologies, methodologies, systems and 
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platforms, and educational processes to propel AI learning 
experiences to the next level. Moving forward, interactive 
learning platforms can be combined with XAI visualization 
tools. This includes the integration of interactive learning 
platforms into the XAI tools to simulate real-world scenarios, 
providing students with hands-on experience in applying AI in 
computer vision applications. Tools such as Augmented Reality 
(AR), Virtual Reality (VR), and Edge Computing can be 
incorporated to explore their potential in creating immersive 
learning environments, allowing students to visualize complex 
concepts in AI and computer vision and enabling students to 
work with resource-efficient models and fostering a deeper 
understanding of deployment considerations.  

In addition, adaptive learning systems can also be 
implemented to tailor educational content based on individual 
student progress, ensuring a personalized and efficient learning 
experience. Collaborative learning platforms can be introduced 
to facilitate knowledge sharing and teamwork, mirroring real-
world scenarios in developing AI and computer vision 
solutions.  

Finally, further research will be embarked to explore other 
pedagogical approaches in AI education to cater to diverse 
learning styles, ensuring inclusivity in AI education. 

VII. CONCLUSION 

This paper presented an approach in AI education by 
integrating AI visualization tools, specifically TensorFlow 
Playground, LIME, and SHAP, as integral components of a 
flipped classroom model for a DL curriculum. The unique 
capabilities of TensorFlow Playground provide an interactive 
platform for students to experiment with DL concepts, while 
LIME and SHAP, as XAI techniques, uncover the black-box 
nature of neural networks. This integration into a flipped 
classroom model facilitates active student engagement, 
enabling exploration and visualization of internal 
representations critical to understanding how black-box DL 
models such as CNNs process and extract features from images. 
An outline of a flipped classroom model was proposed, 
including the module description, learning outcomes, and pre-
and in-class activities, providing a student-centered visual and 
interactive learning experience fostering ownership, 
responsibility, and critical thinking skills preparing students to 
navigate the complexities of modern AI landscapes. 
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