Search results for: Generalized matrix approach
3709 A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions
Authors: Manisha Rathi, Thierry Chaussalet
Abstract:
Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.Keywords: Admission, Fuzzy, Regression, Uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14203708 Examination of Pre-Tender Budgeting Techniques for Mechanical and Electrical Services in Malaysia
Authors: Ganiyu Amuda Yusuf, Sarajul Fikri Mohamed
Abstract:
The procurement and cost management approach adopted for mechanical and electrical (M&E) services in Malaysian construction industry have been criticized for its inefficiency. The study examined early cost estimating practices adopted for mechanical and electrical services (M&E) in Malaysia so as to understand the level of compliance of the current techniques with best practices. The methodology adopted for the study is a review of bidding documents used on both completed and on – going building projects awarded between 2008 – 2010 under 9th Malaysian Plan. The analysis revealed that, M&E services cost cannot be reliably estimated at pre-contract stage; the bidding techniques adopted for M&E services failed to provide uniform basis for contractors to submit tender; detailed measurement of items were not made which could complicate post contract cost control and financial management. The paper concluded that, there is need to follow a structured approach in determining the pre-contract cost estimate for M&E services which will serve as a virile tool for post contract cost control.
Keywords: Cost Management, Mechanical and Electrical Services, Procurement, Standard Method of Measurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19093707 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree
Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman
Abstract:
In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22813706 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis
Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki
Abstract:
Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15823705 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System
Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya
Abstract:
The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.
Keywords: Inter line power flow controller, Transmission Pricing, Unified power flow controller, cost allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6873704 Adequacy of Object-Oriented Framework System-Based Testing Techniques
Authors: Jehad Al Dallal
Abstract:
An application framework provides a reusable design and implementation for a family of software systems. If the framework contains defects, the defects will be passed on to the applications developed from the framework. Framework defects are hard to discover at the time the framework is instantiated. Therefore, it is important to remove all defects before instantiating the framework. In this paper, two measures for the adequacy of an object-oriented system-based testing technique are introduced. The measures assess the usefulness and uniqueness of the testing technique. The two measures are applied to experimentally compare the adequacy of two testing techniques introduced to test objectoriented frameworks at the system level. The two considered testing techniques are the New Framework Test Approach and Testing Frameworks Through Hooks (TFTH). The techniques are also compared analytically in terms of their coverage power of objectoriented aspects. The comparison study results show that the TFTH technique is better than the New Framework Test Approach in terms of usefulness degree, uniqueness degree, and coverage power.Keywords: Object-oriented framework, object-oriented framework testing, test case generation, testing adequacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14303703 Development of Cellulose Panels with Porous Structure for Sustainable Building Insulation
Authors: P. Garbagnoli, M. Musitelli, B. Del Curto, MP. Pedeferri
Abstract:
The study and development of an innovative material for building insulation is really important for a sustainable society in order to improve comfort and reducing energy consumption. The aim of this work is the development of insulating panels for sustainable buildings based on an innovative material made by cardboard and Phase Change Materials (PCMs). The research has consisted in laboratory tests whose purpose has been the obtaining of the required properties for insulation panels: lightweight, porous structures and mechanical resistance. PCMs have been used for many years in the building industry as smart insulation technology because of their properties of storage and release high quantity of latent heat at useful specific temperatures [1]- [2]. The integration of PCMs into cellulose matrix during the waste paper recycling process has been developed in order to obtain a composite material. Experiments on the productive process for the realization of insulating panels were done in order to make the new material suitable for building application. The addition of rising agents demonstrated the possibility to obtain a lighter structure with better insulation properties. Several tests were conducted to verify the new panel properties. The results obtained have shown the possibility to realize an innovative and sustainable material suitable to replace insulating panels currently used.Keywords: Sustainability, recycling, waste cardboard, PCM, cladding system, insulating materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22943702 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines
Authors: Mrs.K.Kavitha, S.Arivazhagan
Abstract:
A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.
Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15233701 Complex Network Approach to International Trade of Fossil Fuel
Authors: Semanur Soyyiğit Kaya, Ercan Eren
Abstract:
Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weaknesses and strength of the system. On the other side, international trade is one of the fields that are analyzed as a complex network via network analysis. Complex network is one of the tools to analyze complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network, countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex networks such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed via Kolmogorov-Smirnov test. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to the data. As a result, impacts of the trading countries have been presented in terms of high-degree indicators.Keywords: Complex network approach, fossil fuel, international trade, network theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23863700 Dependability Tools in Multi-Agent Support for Failures Analysis of Computer Networks
Authors: Myriam Noureddine
Abstract:
During their activity, all systems must be operational without failures and in this context, the dependability concept is essential avoiding disruption of their function. As computer networks are systems with the same requirements of dependability, this article deals with an analysis of failures for a computer network. The proposed approach integrates specific tools of the plat-form KB3, usually applied in dependability studies of industrial systems. The methodology is supported by a multi-agent system formed by six agents grouped in three meta agents, dealing with two levels. The first level concerns a modeling step through a conceptual agent and a generating agent. The conceptual agent is dedicated to the building of the knowledge base from the system specifications written in the FIGARO language. The generating agent allows producing automatically both the structural model and a dependability model of the system. The second level, the simulation, shows the effects of the failures of the system through a simulation agent. The approach validation is obtained by its application on a specific computer network, giving an analysis of failures through their effects for the considered network.
Keywords: Computer network, dependability, KB3 plat-form, multi-agent system, failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6403699 A Practical Approach for Electricity Load Forecasting
Authors: T. Rashid, T. Kechadi
Abstract:
This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.
Keywords: Daily peak load forecasting, feed forward and feedback multi-context neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18543698 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: Noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9913697 Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach
Authors: M. Ismail, Cao Yihua, Zhao Ming
Abstract:
Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.
Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36413696 Optical 3D-Surface Reconstruction of Weak Textured Objects Based on an Approach of Disparity Stereo Inspection
Authors: Thomas Kerstein, Martin Laurowski, Philipp Klein, Michael Weyrich, Hubert Roth, Jürgen Wahrburg
Abstract:
Optical 3D measurement of objects is meaningful in numerous industrial applications. In various cases shape acquisition of weak textured objects is essential. Examples are repetition parts made of plastic or ceramic such as housing parts or ceramic bottles as well as agricultural products like tubers. These parts are often conveyed in a wobbling way during the automated optical inspection. Thus, conventional 3D shape acquisition methods like laser scanning might fail. In this paper, a novel approach for acquiring 3D shape of weak textured and moving objects is presented. To facilitate such measurements an active stereo vision system with structured light is proposed. The system consists of multiple camera pairs and auxiliary laser pattern generators. It performs the shape acquisition within one shot and is beneficial for rapid inspection tasks. An experimental setup including hardware and software has been developed and implemented.Keywords: automated optical inspection, depth from structured light, stereo vision, surface reconstruction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18413695 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering
Authors: Yogita, Durga Toshniwal
Abstract:
Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.
Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26373694 Design Standardization in Aramco: Strategic Analysis
Authors: Mujahid S. Alharbi
Abstract:
The construction of process plants in oil and gas-producing countries, such as Saudi Arabia, necessitates substantial investment in design and building. Each new plant, while unique, includes common building types, suggesting an opportunity for design standardization. This study investigates the adoption of standardized Issue for Construction (IFC) packages for non-process buildings in Saudi Aramco. A SWOT analysis presents the strengths, weaknesses, opportunities, and threats of this approach. The approach's benefits are illustrated using the Hawiyah Unayzah Gas Reservoir Storage Program (HUGRSP) as a case study. Standardization not only offers significant cost savings and operational efficiencies, but also expedites project timelines, reduces the potential for change orders, and fosters local economic growth by allocating building tasks to local contractors. Standardization also improves project management by easing interface constraints between different contractors and promoting adaptability to future industry changes. This research underscores the standardization of non-process buildings as a powerful strategy for cost optimization, efficiency enhancement, and local economic development in process plant construction within the oil and gas sector.
Keywords: Building, construction, management, project, standardization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623693 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16583692 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT
Authors: A. Sindhuja, V. Sadasivam
Abstract:
Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.
Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22073691 Streamwise Conduction of Nanofluidic Flow in Microchannels
Authors: Yew Mun Hung, Ching Sze Lim, Tiew Wei Ting, Ningqun Guo
Abstract:
The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.Keywords: fin approach, microchannel heat sink, nanofluid, streamwise conduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17403690 Person Identification by Using AR Model for EEG Signals
Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi
Abstract:
A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.Keywords: Person Identification, Autoregressive Model, EEG, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17413689 Semi-Automatic Analyzer to Detect Authorial Intentions in Scientific Documents
Authors: Kanso Hassan, Elhore Ali, Soule-dupuy Chantal, Tazi Said
Abstract:
Information Retrieval has the objective of studying models and the realization of systems allowing a user to find the relevant documents adapted to his need of information. The information search is a problem which remains difficult because the difficulty in the representing and to treat the natural languages such as polysemia. Intentional Structures promise to be a new paradigm to extend the existing documents structures and to enhance the different phases of documents process such as creation, editing, search and retrieval. The intention recognition of the author-s of texts can reduce the largeness of this problem. In this article, we present intentions recognition system is based on a semi-automatic method of extraction the intentional information starting from a corpus of text. This system is also able to update the ontology of intentions for the enrichment of the knowledge base containing all possible intentions of a domain. This approach uses the construction of a semi-formal ontology which considered as the conceptualization of the intentional information contained in a text. An experiments on scientific publications in the field of computer science was considered to validate this approach.Keywords: Information research, text analyzes, intentionalstructure, segmentation, ontology, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16383688 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints
Authors: Ferhat Kadioglu, Hasan Puskul
Abstract:
A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.Keywords: Composite materials, adhesive bonding, bonding strength, lap joint, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24493687 Eco-Innovation as a New Sustainable Development Strategy: Case Studies
Authors: Orhan Çoban, Nuryağdı Rozıyev, Fehmi Karasioğlu
Abstract:
Sustainable development is one of the most debated issues, recently. In terms of providing more livable Earth continuity, while Production activities are going on, on the other hand protecting the environment has importance. As a strategy for sustainable development, eco-innovation is the application of innovations to reduce environmental burdens. Endeavors to understand ecoinnovation processes have been affected from environmental economics and innovation economics from neoclassical economics, and evolutionary economics other than neoclassical economics. In the light of case study analyses, this study aims to display activities in this field through case studies after explaining the theoretical framework of eco-innovations. This study consists of five sections including introduction and conclusion. In the second part of the study identifications of the concepts related with eco-innovation are described and eco-innovations are classified. Third section considers neoclassical and evolutionary approaches from neoclassical economics and evolutionary economics, respectively. Fourth section gives the case studies of successful eco-innovations. Last section is the conclusion part and offers suggestions for future eco-innovation research according to the theoretical framework and the case studies.Keywords: Sustainable Development, Innovation, Ecoinnovation, Neoclassical Approach, Evolutionary Approach, Case Studies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20493686 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map
Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr
Abstract:
This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.Keywords: Face detection, skin color segmentation, self-organizingmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25433685 Non-Overlapping Hierarchical Index Structure for Similarity Search
Authors: Mounira Taileb, Sid Lamrous, Sami Touati
Abstract:
In order to accelerate the similarity search in highdimensional database, we propose a new hierarchical indexing method. It is composed of offline and online phases. Our contribution concerns both phases. In the offline phase, after gathering the whole of the data in clusters and constructing a hierarchical index, the main originality of our contribution consists to develop a method to construct bounding forms of clusters to avoid overlapping. For the online phase, our idea improves considerably performances of similarity search. However, for this second phase, we have also developed an adapted search algorithm. Our method baptized NOHIS (Non-Overlapping Hierarchical Index Structure) use the Principal Direction Divisive Partitioning (PDDP) as algorithm of clustering. The principle of the PDDP is to divide data recursively into two sub-clusters; division is done by using the hyper-plane orthogonal to the principal direction derived from the covariance matrix and passing through the centroid of the cluster to divide. Data of each two sub-clusters obtained are including by a minimum bounding rectangle (MBR). The two MBRs are directed according to the principal direction. Consequently, the nonoverlapping between the two forms is assured. Experiments use databases containing image descriptors. Results show that the proposed method outperforms sequential scan and SRtree in processing k-nearest neighbors.
Keywords: K-nearest neighbour search, multi-dimensional indexing, multimedia databases, similarity search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15633684 Data Envelopment Analysis with Partially Perfect Objects
Authors: Alexander Y. Vaninsky
Abstract:
This paper presents a simplified version of Data Envelopment Analysis (DEA) - a conventional approach to evaluating the performance and ranking of competitive objects characterized by two groups of factors acting in opposite directions: inputs and outputs. DEA with a Perfect Object (DEA PO) augments the group of actual objects with a virtual Perfect Object - the one having greatest outputs and smallest inputs. It allows for obtaining an explicit analytical solution and making a step to an absolute efficiency. This paper develops this approach further and introduces a DEA model with Partially Perfect Objects. DEA PPO consecutively eliminates the smallest relative inputs or greatest relative outputs, and applies DEA PO to the reduced collections of indicators. The partial efficiency scores are combined to get the weighted efficiency score. The computational scheme remains simple, like that of DEA PO, but the advantage of the DEA PPO is taking into account all of the inputs and outputs for each actual object. Firm evaluation is considered as an example.
Keywords: Data Envelopment Analysis, Perfect object, Partially perfect object, Partial efficiency, Explicit solution, Simplified algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16973683 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb
Abstract:
This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.
Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30423682 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.
Keywords: Pollen recognition, logistic model tree, expectation-maximization, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7713681 Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization
Authors: Jing-ran Lin, Qi-cong Peng, Huai-zong Shao
Abstract:
The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples.Keywords: Robust adaptive beamforming (RABF), near-field, steering vector mismatches, diagonal loading, worst-case performanceoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18813680 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean-Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods
Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871