

Abstract—An application framework provides a reusable design

and implementation for a family of software systems. If the
framework contains defects, the defects will be passed on to the
applications developed from the framework. Framework defects are
hard to discover at the time the framework is instantiated. Therefore,
it is important to remove all defects before instantiating the
framework. In this paper, two measures for the adequacy of an
object-oriented system-based testing technique are introduced. The
measures assess the usefulness and uniqueness of the testing
technique. The two measures are applied to experimentally compare
the adequacy of two testing techniques introduced to test object-
oriented frameworks at the system level. The two considered testing
techniques are the New Framework Test Approach and Testing
Frameworks Through Hooks (TFTH). The techniques are also
compared analytically in terms of their coverage power of object-
oriented aspects. The comparison study results show that the TFTH
technique is better than the New Framework Test Approach in terms
of usefulness degree, uniqueness degree, and coverage power.

Keywords—Object-oriented framework, object-oriented
framework testing, test case generation, testing adequacy.

I. INTRODUCTION
OFTWARE testing is the process of executing a program
with the intent of finding errors. Testing is a time-

consuming and costly ongoing activity during the application
software development process. In theory, testing cannot prove
the absence of errors, but it increases the level of confidence
in the developed software. Central to the testing activities is
the design of a test suite. The basic element of a test suite is a
test case that describes the input test data, the test
preconditions, and the expected output. To test an object-
oriented application, four main testing levels have to be
exercised, including method testing, class testing, cluster
testing, and system testing [1]. At the method testing level, the
method responsibilities are considered. At the class testing
level, the intraclass interactions and superclass/subclass
interactions are examined. At the cluster testing level, the
collaborations and interactions between the system classes are
exercised. Finally, at the system testing level, the complete
integrated system is exercised, usually based on acceptance
testing requirements.

Manuscript received May 12, 2007. The author would like to acknowledge

the support of this work by Kuwait University Research Grant WI01/06.
Jehad Al Dallal is with Department of Information Sciences, Kuwait

University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

An object-oriented framework is the reusable design and
implementation of a system or subsystem [2]. It contains a
collection of reusable concrete and abstract classes. The
framework design provides the context in which the classes
are used. The framework itself is not complete. Users of the
framework are expected to complete or extend the framework
to build their particular applications. Places at which users can
add their own classes are called hook points [3]. Typically,
hooks are associated with problem domain classes. Problem
domain classes are representations of external entities or
concepts that are necessary for the implementation-
independent models of the system. For example, in an order-
processing system, Customer, Order, and Product are problem
domain classes; LinkedList is not. When the framework is
used to build an application, hooks are used to build classes
that extend or use the problem domain classes. These classes
are called framework interface classes (FICs). The methods
inside FICs are called hook methods. Instances of FICs are
called framework interface objects. Fig. 1 shows the
relationship between the framework’s problem domain
classes, the hooks, and the FICs.

Fig. 1 Framework instantiation classes

Framework defects are passed on to the applications

developed from the framework, and they might show up under
certain uses. Frameworks can be used in many different ways,
and therefore, they require the application of a lot of test
cases. Software testing is a time consuming and labor-
intensive task. In order to reduce the software testing cost
while maintaining the same or better software quality,
framework developers aim at applying testing techniques that
are adequate for object-oriented frameworks. Test techniques
adequate for testing object-oriented frameworks at system
level produce test cases that are unique (i.e., not redundant),
effective in terms of error detection, and focused in terms of
testing behaviors anticipated to be exercised by framework
users. A redundant test case is a one that its testing coverage is

Jehad Al Dallal

Adequacy of Object-Oriented Framework
System-Based Testing Techniques

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:5, 2008

1531International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

68
7.

pd
f

a subset of the coverage of other prebuilt test cases. Reducing
the overlap between the coverage areas of the test cases
reduces the number of redundant test cases and consequently
reduces the testing time and cost. Similarly, focusing the
testing on the behaviors anticipated to be exercised by
framework users and ignoring other behaviors added for
debugging purposes or to apply object-oriented conventions
reduces the testing time and cost. Useful test cases are the
ones generated to test a framework’s anticipated behaviors. As
a result, framework developers aim at avoiding the use of
testing techniques that generate test cases of low usefulness or
high redundancy degrees. Building and applying useless or
redundant test cases consume testing time and effort and do
not add any testing value.

Several techniques are proposed to test object-oriented
frameworks and their applications (e.g., [4,5,6,7,8,9,10,11,
12]). Among the framework testing techniques, the New
Framework Test [4] and Testing Frameworks Through Hooks
(TFTH) [7] are the only techniques introduced to test object-
oriented frameworks at the system level.

In this paper, two measures are introduced to assess the
usefulness and uniqueness of a testing approach. In addition,
the two framework system-level testing techniques, New
Framework Test and TFTH, are compared analytically and
experimentally. The analytical comparison is based on the
testing techniques’ power in covering the object-oriented
aspects and aims at giving insights on the adequacy of the
testing techniques in terms of object-oriented-specific error
detection power. The experimental comparison aims at
evaluating the adequacy of the testing techniques in terms of
their usefulness and uniqueness degrees. Two frameworks are
considered in the experimental comparison study: the Client-
Server Framework (CSF) [3] and the WaveFront Pattern
framework [13]. The comparison study results show that the
TFTH technique is better than the New Framework Test
Approach in terms of object-oriented aspects coverage power,
usefulness, and uniqueness.

The paper is organized as follows. Section II discusses the
related work. Section III introduces the usefulness and
uniqueness metrics. Sections IV and V, respectively, compare
the two considered framework testing techniques analytically
and experimentally. Finally, Section VI provides conclusions
and a discussion of future work.

II. RELATED WORK
Several techniques are proposed to test object-oriented

frameworks and their applications. In this paper, two of these
testing techniques are considered: the New Framework Test
Approach and the TFTH.

A. The New Framework Test Approach
Binder [4] introduces a testing approach called the New

Framework Test to develop test cases for a framework that has
few, if any, instantiations. In this approach, four likely types
of defects are checked: incomplete/missing behavior or
representation, broken association constraints, control defects,
and infrastructure code defects. The approach suggests
building a demonstration application that provides a minimal

implementation level for each use case. Test cases have to be
developed to test the demo application using three testing
techniques: (1) the Extended Use Case Test, (2) the Class
Association Test, and (3) transition coverage for a state
machine (N+ Test technique) or branch coverage on all
sequence diagrams. The Extended Use Cases technique
develops test suites to cover application input/output
relationships. The Class Association Test technique checks the
implementation of class associations. The N+ Test technique
uses a state-based model to construct a graph called a round-
trip path tree, which shows all round-trip paths. Round-trip
paths are transition sequences that start and end with the same
state and simple paths from the alpha to the omega states. A
simple path includes only an iteration of a loop, if a loop
exists in a sequence. Each path, from the root of the tree to a
terminal node, presents a possible test case. The N+ coverage
also requires building a test case for each illegal or
unspecified event of a state. Finally, all guards associated with
the transitions have to be exercised at least once in a test case.
The N+ strategy covers guard faults, missing transitions,
sneak paths (extra transitions), incorrect actions (wrong or
missing), incorrect resultant states, missing states, and corrupt
resultant states.

B. The TFTH Technique
TFTH is a testing technique that tests frameworks at the

system level. It tests that the framework use cases are
implemented correctly. FICs extend or use framework classes
to implement the use cases; therefore, TFTH tests frameworks
through FICs. Hook descriptions specify the behaviors of the
FICs, and they are used to construct the FIC Hook State
Transition Diagram (HSTD) automatically. The HSTD models
FIC behavior and consists of nodes and direct links. Each
node represents a state (i.e., a set of instance-variable value
combinations of the class object), and each link represents a
transition. A transition is an allowable two-state sequence
caused by an event. An event is a method call. There are two
types of links solid and dotted, which represent transitions
associated with explicit and implicit events, respectively.
Implicit events are calls to methods called implicitly by other
methods. The transition labels have the following form:

event-name argument-list [guard predicate]/action-
expression

Hook descriptions define how to construct FIC methods.
These methods are called hook methods. Each hook method
(i.e., a method defined in hook descriptions) is modeled by a
Construction Flow Graph (CFG), a graphical representation of
the control structure of the construction sequence of the hook
method contents.

Typically, FICs consist of multiple hook methods. Each
hook method introduced in the hook description can have
different possible implementations. Therefore, each FIC can
have multiple different possible implementations. The FIC
implementations are constructed by considering the
combinations of possible implementations of hook methods. A
demo instantiation that can be used in the testing process
consists of an implementation of one or more FICs and the
framework code.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:5, 2008

1532International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

68
7.

pd
f

The TFTH technique generates a framework test suite in
seven steps, as follows:
1. Determine the FICs.
2. Construct the HSTDs of the FICs.
3. Produce a round-trip path tree for each HSTD using
Binder’s procedure [4], which guarantees covering each
transition at least once. The tree shows all the round-trip
paths. Round-trip paths are transition sequences that start and
end with the same state and simple paths from alpha to omega
states. A simple path includes only an iteration of a loop, if a
loop exists in a sequence. In this step, the dotted links in the
HSTD are represented by dotted links in the round-trip path
tree.
4. Construct a CFG for each hook method.
5. Generate test data for all parameters of the hook methods.
6. Generate hook method possible implementations. Each
implementation of a hook method exercises a combination of
test data, generated in Step 5, in a CFG simple complete path
or extreme complete path. A complete path is a path that starts
at the graph's entry node and ends at the graph's exit node. A
simple complete path is a complete path that includes, at most,
an iteration of a loop, if a loop exists in some sequence. An
extreme complete path is a complete path that includes at least
(maximum number of iterations of a loop –1), if a loop exists
in a sequence.
7. Produce framework test cases. Each test case exercises a
single round-trip path and covers one possible combination of
implementations of hook methods called in the round-trip
path. A complete framework test suite contains test cases that
cover all combinations of parameter test data in all simple and
extreme complete paths of the CFGs and simple complete
round-trip paths in all round-trip path trees.

C. Other Related Work
Binder [14] suggests that the testing of framework

instantiations should be based on system requirements. The
new classes and objects developed by the instantiation
developer must be individually tested. Moreover, cluster
testing should be applied to verify that the developer objects
are making correct use of the framework code. In this step, the
framework test suite can be extended to test the instantiation
extensions. Tsai et al. [5] discuss the issues of testing
instantiations developed with design patterns using object-
oriented frameworks. Framework developers should test that
the extensible patterns allow the instantiation developer to
extend its functionality. The instantiation designers should
verify that the extension points are properly coded and tested.
The paper introduces a technique to generate scenario
templates that can be used to generate different types of
cluster-based test scenarios. These test scenarios are used to
test sequence constraints on the interactions between
framework objects and custom objects. Wang et al. [6]
propose providing the framework with reusable test cases that
can be applied at the instantiation development stage.

Al Dallal and Sorenson [8,15,16,17] propose a technique to
test the FICs at the class level using reusable test cases built
during the framework development stage. The testing is
performed in four steps. During the framework development
stage, in the first step, the specifications of the FIC methods

are used to synthesize the FIC class-based testing model. In
the second step, the model is used to generate the reusable
class-based test cases for the FIC. During the framework
instantiation development stage, in the third step, the test cases
are used to test the implemented FICs. Finally, in the fourth
step, the specifications of the FIC methods are used to
evaluate the results of the test cases. Al Dallal [12] proposes a
technique to test the frameworks's hook methods. The
technique builds demo implementations for the hook methods
and test suites to test the demo implementations. Kauppinen et
al. [9] propose a criterion to evaluate the hook coverage of a
test suite used to test hook methods. The hook method
coverage is defined as the structural coverage (e.g., statement
coverage) of a hook method implementation provided by the
test cases that reach the method. RITA [10] is a software tool
that supports framework testing and automates the calculation
of the hook method coverage measure. The user of the tool
has to provide implementations for the hook methods.

The work on testing the software product line and product
family is relevant to the problem of testing frameworks. A
software product family is a set of software products that
shares common features [18]. The natural core of a product
family is a set of software assets that is reused across products
[19]. Variation points are points at which the products of a
product family differ (i.e., each product has a different
implementation, which is called a variant, for an abstract class
associated with a variant point) [11]. In framework-based
software product families, the variation points are the hook
points, and implementations of the FICs are the variants.
McGregor [20] suggests testing the product line core assets
before using them in building the product. Methods of classes
associated with variation points can be tested using pre-built
variants produced by the product line organization. As does
McGregor [20], Cohen et al. [11] suggest using combination
testing strategies [21] to build test cases to test product line
variants.

III. THE USEFULNESS AND UNIQUENESS MEASURES
In practice, not all possible framework object behaviors are

expected to be exercised in the framework instantiations.
Some of the behaviors can be added to support the
polymorphic behaviors (i.e., a method in a superclass that is
overridden in all of its subclasses). Other behaviors can be
added to access instance variables and are neither used in the
framework nor expected to be accessed by the application
developers. Some sequences of behaviors might be possible,
but they are not expected to be exercised in any of the possible
framework instantiations. Some of the behaviors can be added
for debugging purposes, and thus, are not required to be
tested. Finally, some possible class associations can never be
expected to occur in any of the framework instantiations.

When testing object-oriented frameworks at system level,
framework anticipated behaviors provided through the
problem domain classes should be considered. Other
nonanticipated behaviors added for debugging purposes or to
apply object-oriented conventions can be ignored because
they are not expected to be exercised when the framework is
used to build applications. Useful test cases are the ones
generated to test a framework’s anticipated behaviors.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:5, 2008

1533International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

68
7.

pd
f

Software testing is a time-consuming and labor-intensive task.
To reduce the testing time and effort, software developers aim
at avoiding the use of testing techniques that generate test
cases of low usefulness degree.

Studying the usefulness degree UStc(A) of a testing
technique in testing an application A can be conducted
experimentally by (1) identifying the set Sbehaviours(A) of system
under test anticipated behaviors, (2) applying the testing
technique to build the set of test cases Stc(A) for application A,
(3) identifying the set of test cases Scontributing tc(A) that
contribute to testing the anticipated behaviors identified in
Step 1, and (4) calculating the ratio UStc of the test cases that
contribute to testing the anticipated behaviors to the total
number of built test cases. The usefulness degree of a testing
technique in testing an application A is defined formally as
follows:

)(

)(
)(

AS

AS
AUS

tc

tcngcontributi
tc =

The usefulness degree ranges within the interval [0,1]

where 0 indicates that none of the test cases is useful for
testing the system's anticipated behaviors and 1 indicates that
all of the test cases contribute to testing the system's
anticipated behaviors. Software testers aim at applying testing
techniques that generate test cases of high usefulness degree
to test applications at the system level, because these testing
techniques are more focused on testing the system's
anticipated behaviors.

In some testing approaches, several testing techniques are
applied. Each testing technique has a coverage criterion to be
satisfied when generating the test cases. The testing criteria of
different testing techniques can overlap. Having an overlap,
between the testing criteria of different testing techniques,
results in producing redundant test cases. Given a certain
testing coverage criterion, a redundant (i.e., not unique) test
case is one that its testing coverage is a subset of the coverage
of other prebuilt test cases. For example, if the coverage
criterion requires exercising lines of code 1-10, a test case
exercises lines 1-5, and another test case exercises lines 6-7, a
test case that exercises lines of code 4-6 is redundant because
its testing coverage is a subset of the coverage of the other
two test cases. Typically, software developers aim at avoiding
the use of a combination of testing techniques that result in
producing a high percentage of redundant test cases. Building
and applying redundant test cases consume testing time and
effort and do not add any testing value.

Studying the uniqueness degree UNtc(A,Stechniques) of a set
Stechniques of testing techniques involved in a testing approach
used for testing an application A can be conducted
experimentally by (1) identifying the coverage criteria
imposed by each testing technique and constructing an empty
set of test cases Scoverage criterion for each coverage criterion, (2)
applying each testing technique to build the set Stc(A,Stechniques)
of test cases, (3) constructing the set Sredundant tc(A,Stechniques) of
redundant test cases by applying the Identifying Redundant
Test Cases algorithm given in Figure 2, and (4) calculating the

ratio of the number of redundant test cases to the total number
of built test cases. The uniqueness degree of a testing
approach applied for testing an application A is defined
formally as follows:

),(

),(
1),(

techniquestc

techniquestcredundant
techniquestc SAS

SAS
SAUN −=

Fig. 2 Identifying Redundant Test Cases algorithm

Since 0≤Sredundant tc(A,Stechniques)<Stc(A,Stechniques), the value of

UNtc(A,Stechniques) is always greater than 0 and less than or
equal to 1. The uniqueness degree 1 indicates that all the test
cases are unique. Software testers aim at applying testing
approaches that have high uniqueness degree to test
applications at the system level, because these testing
approaches are more efficient in terms of testing time.

IV. THE ANALYTICAL COMPARISON
Table I summarizes the relative coverage power of the New

Framework Test approach and the TFTH technique. The two
testing techniques cover the framework system use cases
using two different techniques. The New Framework Test
uses the Extended Use Case Test, a technique used for testing
any object-oriented application at the system level. The TFTH
technique uses hooks, a specific technology introduced for
object-oriented frameworks. In this testing technique, the
FICs created at hook points are tested, and they are used to
test the framework at the system level. Some hook
descriptions specify the extensibility of the framework, and
therefore, the TFTH technique uses such hook descriptions to
build test cases that can be used at the instantiation
development stage to test the framework’s extensibility.

The New Framework Test approach is better in terms of
class-state transition coverage, because it uses the N+ Test, a
specific class-based testing technique. However, some of the
state transitions are not anticipated to be exercised by the
framework instantiations, as discussed in Section I. Therefore,
the TFTH is better in terms of focusing the test on achievable
state transitions.

The New Framework Test approach uses the Class
Association Test, a specific testing technique for class
associations. However, the testing technique is used to test
only the multiplicity of the associations between framework
and instantiation classes. The TFTH technique tests, in
addition, the multiplicity of the associations between the
framework and instantiation classes. The New Framework
Test approach tests the inheritance relation between the

for each test case tc in Stc(A,Stechniques) do
 for each set Scoverage criterion do
 if the coverage of the test case tc is a subset of the

coverage of the test cases included in Scoverage criterion
then

 Sredundant tc(A,Stechniques)= Sredundant tc(A,Stechniques) ∪ tc
 else
 Scoverage criterion= Scoverage criterion ∪ tc

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:5, 2008

1534International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

68
7.

pd
f

framework classes. The TFTH technique covers, in addition,
the inheritance of the framework classes. Finally, the TFTH
technique addresses testing polymorphic behaviors specified

in the option hooks. The testing of polymorphic behaviors is
not addressed in the New Framework Test approach.

TABLE I

COVERAGE POWER COMPARISON BETWEEN THE NEW FRAMEWORK TEST APPROACH AND THE TFTH TECHNIQUE

V. THE EXPERIMENTAL COMPARISON STUDY
The New Framework Test approach and the TFTH

technique were used to generate test cases for two
frameworks: the CSF and the WaveFront Pattern. The test
cases are compared in terms of their usefulness and
uniqueness.

A. Generating Test Cases for the CSF
The CSF is a communications framework written in Java

and developed to support the building of relatively small
applications that require client-server or peer-to-peer
communication support. The CSF also provides persistent
storage capabilities and can handle communications over a
TCP/IP connection using a model similar to email. The CSF
deals with synchronous and asynchronous messages sent
between remote objects. The framework code consists of 38
classes and about 1.4K lines of code (without comments/blank
lines).

Both the New Framework Test approach and the TFTH
technique are applied to generate test cases for the CSF. As
mentioned in Section II, the New Framework Test approach
uses three testing techniques. The results of applying the three
testing techniques are shown in the second, third, and fourth

columns of Table II. The fifth column summarizes the results
of applying the three techniques. The last column summarizes
the results of applying the TFTH technique. The first row of
Table II lists the names of the applied testing techniques. The
second row shows the number of test cases generated using
each of the testing techniques. The third row reports the
number of useful test cases. The fourth and fifth rows report
the usefulness and uniqueness degrees of the testing
techniques. The sixth row reports the number of classes
exercised directly by the test cases. The seventh row reports
the number of useful test cases that are covered using the
testing technique but are not covered using the other testing
technique. Finally, the last row reports the number of test
cases generated to test the extensibility of the framework.

The results of applying the New Framework Test approach
show that it has a low (0.288) usefulness degree. This is due
to that fact that N+ Test is a class-based technique applied for
each class in the framework. Some of the framework classes
are not directly accessed by the framework users. For such
classes, some sequences of behaviors might be possible, but
they are not expected to be exercised in any of the possible
framework instantiations. As a result, building and applying
test cases to test such sequences is ineffective in terms of time

Coverage criterion New Framework Test approach TFTH technique

System use case
coverage

All use cases are covered using Extended Use
Case Test.

All use cases are covered using hooks.

Class state transition
coverage

All state transitions are covered. Most of reachable state transitions are covered.

Class association
coverage

Multiplicity of associations among
framework classes are covered.

1. Multiplicity of associations between
instantiation and framework classes are
covered.

2. Most of the multiplicity of associations among
framework classes are covered.

FIC state transition
coverage

Not applicable All state transitions of the FICs are covered.

Inheritance behavior
coverage

All inheritance behaviors among framework
components are covered.

1. All expected to be used inheritance behaviors of
the framework components are covered.

2. Most of inheritance behaviors among framework
components are covered.

Polymorphic behavior
coverage

Not covered Polymorphic behaviors related to options in hook
option statements are covered.

Extensibility coverage Not considered Test cases are generated to test the extensibility of
the framework.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:5, 2008

1535International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

68
7.

pd
f

and effort. The same applies for the test cases generated using
the Class Association Test technique because some possible
class associations covered by the testing technique can never
be expected to occur in any of the framework instantiations.
All the test cases generated using the Extended Use Case Test
are useful, because the testing technique focuses only on cases
expected to be exercised in the framework instantiation. On
the other hand, the results of applying the TFTH technique
show that all the generated test cases are useful. This is due to
the fact that the TFTH technique performs the testing through
the FICs, and therefore, only possible cases to be exercised are
considered.

The results given in Table II show experimentally that the
coverage areas of the three testing techniques used in the New
Framework Test approach overlap (i.e., they are not
orthogonal). As a result, some of the testing work performed
using the New Framework Test approach is redundant.
Generating and applying redundant test cases is ineffective in
terms of time and effort. On the other hand, the results of
applying the TFTH technique show that none of the generated
test cases are redundant. This is due to the fact that the TFTH
technique uses one technique to generate the test cases.

The results given in Table II show that only a few of the
useful test cases (2.2% of the useful test cases) generated
using the New Framework Test approach is not covered using
the TFTH technique. Most of these test cases are used to test
the associations between framework classes. This indicates
that the New Framework Test approach is better than the
TFTH technique in covering the framework class associations.
The number of test cases generated using the TFTH technique
is less than half the number of test cases generated using the
New Framework Test approach. However, most of the useful
test cases (85.3%) generated using the TFTH technique are

not covered using the other testing approach. These test cases
are generated to test the hooks, polymorphic behaviors,
inheritance of the framework objects, associations between
framework and interface classes, and framework extensibility.

Since the New Framework Test approach does not consider
testing the extensibility of the framework, none of the
generated test cases are useful to perform this important
framework testing aspect. On the other hand, more than one-
third of the test cases generated using the TFTH technique test
the extensibility of the framework. These test cases can be
augmented at the framework instantiation testing process.

Finally, the results given in Table II show that the TFTH
technique focuses the testing on one fourth of the classes
covered by the New Framework Test approach. This indicates
that focusing on a few of the framework classes (i.e., focusing
on the anticipated to be used classes) is enough to cover most
of the useful test cases.

B. Generating Test Cases for the WaveFront Pattern
Framework

The WaveFront Pattern (WFP) [13] is a pattern that
supports the computation of dependent elements. The pattern
is used to generate frameworks automatically using the
CO2P3S parallel programming system [22]. A generated WFP
framework is considered in this experiment. The framework is
relatively small, consisting of six classes and about 150 lines
of code. Three hooks are used to document how to use the
framework.

Both the New Framework Test approach and the TFTH
technique are applied to generate test cases for the WFP
framework. The results of applying the testing techniques on
the framework are shown in Table III. These results are
generally close to the ones shown in Table II.

TABLE II

RESULTS OF APPLYING THE NEW FRAMEWORK TEST APPROACH AND TFTH TECHNIQUE ON CSF FRAMEWORK

New Framework Test approach

N+ Test Extended Use
Case Test

Class
Association Test

Total

TFTH technique

Number of generated test cases 1067 63 132 1262 614

Number of useful test cases 244 63 57 364 614

Usefulness degree 0.227 1.0 0.432 0.288 1.0

Uniqueness degree - - - 0.902 1.0

Number of classes/objects
focused on (out of 40 classes)

40 10 40 40 (100% of the
CSF classes)

10 (25% of the
CSF classes)

Number of useful test cases not
covered by the other testing
technique

1 (0.4% of
the useful
test cases)

0 (0% of the
useful test
cases)

7 (12.3% of the
useful test
cases)

8 (2.2% of the
useful test
cases)

524 (85.3% of the
useful test cases)

Number of test cases to test the
extensibility of the framework

0 0 0 0 (0% of the
generated test
cases)

232 (37.8% of
the generated test
cases)

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:5, 2008

1536International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

68
7.

pd
f

TABLE III

RESULTS OF APPLYING THE NEW FRAMEWORK TEST APPROACH AND TFTH TECHNIQUE ON WAVEFRONT PATTERN FRAMEWORK

VI. CONCLUSIONS AND FUTURE WORK
In this paper, two measures are introduced to evaluate the

adequacy of two object-oriented framework system-based
testing techniques. The two measures are usefulness and
uniqueness of the testing techniques. The two testing
techniques considered in the comparison study are the New
Framework Test approach and the TFTH technique. The two
testing techniques are also analytically compared. The
analytical comparison shows that the TFTH technique is more
powerful in covering the class associations between the
instantiation and framework classes, the hooks, the framework
component inheritance, the polymorphic behaviors, and
framework extensibility. The New Framework Test approach
is more powerful in covering the framework class-state
transitions, the associations among the framework classes, and
the inheritance behaviors among the framework components.
Two frameworks are used in the experimental comparison
study: the CSF and the WFP. The experimental comparison
study results show that the number of test cases generated
using the TFTH technique is less than the number of test cases
generated using the New Framework Test approach. However,
the TFTH technique is better than the New Framework Test
approach in terms of usefulness and uniqueness measured
values. The TFTH technique can be enhanced by combining it
to the Class Association Test to cover the framework class
associations.

In our future research, we plan to compare the two testing
techniques in terms of fault coverage. In addition, we plan to
apply the introduced usefulness and uniqueness measures to
compare testing techniques introduced for testing types of
software other than object-oriented frameworks.

ACKNOWLEDGMENT
The author would like to acknowledge the support of this

work by Kuwait University Research Grant WI01/06.

REFERENCES
[1] H. Chen, T. Tse, and T. Chen, Jan. 2001, TACCLE: a methodology for

object-oriented software Testing At the Class and Cluster Levels, ACM
Transactions on Software Engineering and Methodology, Vol.10, No.1,
pp.56-109.

[2] K. Beck and R, Johnson, 1994. Patterns generated architectures, Proc.
of ECOOP 94, 139-149.

[3] G. Froehlich, 2002. Hooks: an aid to the reuse of object-oriented
frameworks, Ph.D. Thesis, University of Alberta, Department of
Computing Science.

[4] R. Binder, 1999. Testing object-oriented systems, Addison Wesley.
[5] W. Tsai, Y. Tu, W. Shao, and E. Ebner, October, 1999. Testing

extensible design patterns in object-oriented frameworks through
scenario templates, 23rd Annual International Computer Software and
Applications Conference, Phoenix, Arizona.

[6] Y. Wang, D. Patel, G. King, I. Court, G. Staples, M. Ross, and M.
Fayad, March 2000, On built-in test reuse in object-oriented framework
design, ACM Computing Surveys (CSUR), Vol. 32(1es), pp. 7-12.

[7] J. Al Dallal and P. Sorenson, September 2002, System testing for
object-oriented frameworks using hook technology, Proc. of the 17th
IEEE International Conference on Automated Software Applications
(ASE’02), Edinburgh, UK, pp. 231-236.

New Framework Test approach

N+ Test Extended Use
Case Test

Class
Association Test

Total

TFTH technique

Number of generated test cases 128 23 35 186 125

Number of useful test cases 61 23 13 97 125

Usefulness degree 0.477 1.0 0.371 0.522 1.0

Uniqueness degree - - - 0.691 1.0

Number of classes/objects
focused on (out of 6 classes)

6 2 6 6 (100% of the
WFP
framework
classes)

2 (33.3% of the
WFP framework
classes)

Number of useful test cases not
covered by the other testing
technique

0 (0% of the
useful test
cases)

0 (0% of the
useful test
cases)

1 (7.7% of the
useful test
cases)

1 (1.0% of the
useful test
cases)

95 (76% of the
useful test cases)

Number of test cases to test the
extensibility of the framework

0 0 0 0 (0% of the
generated test
cases)

65 (52% of the
generated test
cases)

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:5, 2008

1537International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

68
7.

pd
f

[8] J. Al Dallal and P. Sorenson, 2005, Reusing class-based test cases for
testing object-oriented framework interface classes, Journal of Software
Maintenance and Evolution: Research and Practise, Vol. 17, No. 3, pp.
169-196.

[9] R. Kauppinen, J. Taina, and A. Tevanlinna, Hook and template
coverage criteria for testing framework-based software product
families, In Proceedings of the International Workshop on Software
Product Line Testing, Boston, Massachusetts, USA, 2004.

[10] A. Tevanlinna, Product family testing with RITA, Proceedings of the
Eleventh Nordic Workshop on Programming and Software
Development Tools and Techniques, Turku, Finland, 2004.

[11] M. B. Cohen, M. B. Dwyer, and J. Shi, Coverage and adequacy in
software product line testing, Proceedings of the International
Symposium on Software Testing and Analysis 2006 workshop on Role
of software architecture for testing and analysis, Portland, Maine,
USA, 2006.

[12] J. Al Dallal, Testing object-oriented hook methods, accepted for
publication in the Kuwait Journal of Science and Engineering, 2007.

[13] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling and K.
Tan, Generating Parallel Programs from the Wavefront Design Pattern,
Proceedings of the 7th International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS'02), Fort
Lauderdale, Florida. April 2002

[14] R. Binder, Testing object-oriented software: A survey, Software
Testing, Verification and Reliability, Vol. 6 No. 3/4, pp. 125-252, 1996.

[15] J. Al Dallal and P. Sorenson, Generating class based test cases for
interface classes of object-oriented black box frameworks, Transactions
on Engineering, Computing and Technology, November 2006, Vol. 16,
pp. 90-95.

[16] J. Al Dallal and P. Sorenson, Generating state based testing models for
of object-oriented framework interface classes, Transactions on
Engineering, Computing and Technology, November 2006, Vol. 16, pp.
96-102.

[17] J. Al Dallal and P. Sorenson, The coverage of the object-oriented
framework application class-based test cases, Transactions on
Engineering, Computing and Technology, November 2006, Vol. 16, pp.
103-107.

[18] J. Bosch, Design and Use of Software Architectures. Addison-Wesley,
2000.

[19] A. Tevanlinna, J. Taina, and R. Kauppinen, Product family testing: a
survey, ACM SIGSOFT Software Engineering Notes, Vol. 29, No. 2,
pp. 12-18, 2004.

[20] J. McGregor, Testing a software product line, Technical Report
CMU/SEI-2001-TR-022, Software Engineering Institute, Pittsburgh,
PA. 2001.

[21] M. Grindal, J. Offutt, and S.F. Andler, Combination testing strategies: a
survey, Software Testing, Verification and Reliability, 2005, Vol. 15,
No. 3, pp.167-199.

[22] S. McDonald, J. Schaeffer, and D. Szafron, Pattern-based object-
oriented parallel programming. Proceedings of the First International
Scientific Computing in Object-Oriented Parallel Environments
Conference (ISCOPE’97), Vol. 1343 of Lecture Notes in Computer
Science, 1997, pp 167-274.

Jehad Al Dallal received his B.Sc. and M.Sc. in degrees in computer
engineering from Kuwait University in Kuwait in 1995 and 1997,
respectively. He received his PhD degree in computer science from the
University of Alberta in Canada in 2003.

He is currently working at Kuwait University, Department of Information
Sciences, as an assistant professor. His research interests include software
testing and software analysis.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:5, 2008

1538International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

68
7.

pd
f

	v41-1.pdf
	v41-2.pdf
	v41-3.pdf
	v41-4.pdf
	v41-5.pdf
	v41-6.pdf
	v41-7.pdf
	v41-8.pdf
	v41-9.pdf
	v41-10.pdf
	v41-11.pdf
	v41-12.pdf
	v41-13.pdf
	v41-14.pdf
	v41-15.pdf
	v41-16.pdf
	v41-17.pdf
	v41-18.pdf
	v41-19.pdf
	v41-20.pdf
	v41-21.pdf
	v41-22.pdf
	v41-23.pdf
	v41-24.pdf
	v41-25.pdf
	v41-26.pdf
	v41-27.pdf
	v41-28.pdf
	v41-29.pdf
	v41-30.pdf
	v41-31.pdf
	v41-32.pdf
	v41-33.pdf
	v41-34.pdf
	v41-35.pdf
	v41-36.pdf
	v41-37.pdf
	v41-38.pdf
	v41-39.pdf
	v41-40.pdf
	v41-41.pdf
	v41-42.pdf
	v41-43.pdf
	v41-44.pdf
	v41-45.pdf
	v41-46.pdf
	v41-47.pdf
	v41-48.pdf
	v41-49.pdf
	v41-50.pdf
	v41-51.pdf
	v41-52.pdf
	v41-53.pdf
	v41-54.pdf
	v41-55.pdf
	v41-56.pdf
	v41-57.pdf
	v41-58.pdf
	v41-59.pdf
	v41-60.pdf
	v41-61.pdf
	v41-62.pdf
	v41-63.pdf
	v41-64.pdf
	v41-65.pdf
	v41-66.pdf
	v41-67.pdf
	v41-68.pdf
	v41-69.pdf
	v41-70.pdf
	v41-71.pdf
	v41-72.pdf
	v41-73.pdf
	v41-74.pdf
	v41-75.pdf
	v41-76.pdf
	v41-77.pdf
	v41-78.pdf
	v41-79.pdf
	v41-80.pdf
	v41-81.pdf
	v41-82.pdf
	v41-83.pdf
	v41-84.pdf
	v41-85.pdf
	v41-86.pdf
	v41-87.pdf
	v41-88.pdf
	v41-89.pdf
	v41-90.pdf
	v41-91.pdf
	v41-92.pdf
	v41-93.pdf
	v41-94.pdf
	v41-95.pdf
	v41-96.pdf
	v41-97.pdf
	v41-98.pdf
	v41-99.pdf
	v41-100.pdf
	v41-101.pdf
	v41-102.pdf
	v41-103.pdf
	v41-104.pdf
	v41-105.pdf
	v41-106.pdf
	v41-107.pdf
	v41-108.pdf
	v41-109.pdf
	v41-110.pdf
	v41-111.pdf
	v41-112.pdf
	v41-113.pdf
	v41-114.pdf
	v41-115.pdf
	v41-116.pdf
	v41-117.pdf
	v41-118.pdf
	v41-119.pdf
	v41-120.pdf
	v41-121.pdf
	v41-122.pdf
	v41-123.pdf
	v41-124.pdf
	v41-125.pdf
	v41-126.pdf
	v41-127.pdf
	v41-128.pdf
	v41-129.pdf
	v41-130.pdf
	v41-131.pdf
	v41-132.pdf
	v41-133.pdf
	v41-134.pdf
	v41-135.pdf
	v41-136.pdf
	v41-137.pdf
	v41-138.pdf
	v41-139.pdf
	v41-140.pdf
	v41-141.pdf
	v41-142.pdf
	v41-143.pdf
	v41-144.pdf
	v41-145.pdf
	v41-146.pdf
	v41-147.pdf
	v41-148.pdf
	v41-149.pdf
	v41-150.pdf
	v41-151.pdf
	v41-152.pdf
	v41-153.pdf
	v41-154.pdf
	v41-155.pdf
	v41-156.pdf
	v41-157.pdf
	v41-158.pdf
	v41-159.pdf
	v41-160.pdf
	v41-161.pdf
	v41-162.pdf
	v41-163.pdf
	v41-164.pdf
	v41-165.pdf
	v41-166.pdf
	v41-167.pdf
	v41-168.pdf

