Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 916

Search results for: MFCC feature warping.

916 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach

Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik

Abstract:

We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.

Keywords: Noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
915 Improved Text-Independent Speaker Identification using Fused MFCC and IMFCC Feature Sets based on Gaussian Filter

Authors: Sandipan Chakroborty, Goutam Saha

Abstract:

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for speech related applications. On a recent contribution by authors, it has been shown that the Inverted Mel- Frequency Cepstral Coefficients (IMFCC) is useful feature set for SI, which contains complementary information present in high frequency region. This paper introduces the Gaussian shaped filter (GF) while calculating MFCC and IMFCC in place of typical triangular shaped bins. The objective is to introduce a higher amount of correlation between subband outputs. The performances of both MFCC & IMFCC improve with GF over conventional triangular filter (TF) based implementation, individually as well as in combination. With GMM as speaker modeling paradigm, the performances of proposed GF based MFCC and IMFCC in individual and fused mode have been verified in two standard databases YOHO, (Microphone Speech) and POLYCOST (Telephone Speech) each of which has more than 130 speakers.

Keywords: Gaussian Filter, Triangular Filter, Subbands, Correlation, MFCC, IMFCC, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
914 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
913 Analysis of Combined Use of NN and MFCC for Speech Recognition

Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam

Abstract:

The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.

Keywords: Speech Recognition, MFCC, Neural Network, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2921
912 Voice Command Recognition System Based on MFCC and VQ Algorithms

Authors: Mahdi Shaneh, Azizollah Taheri

Abstract:

The goal of this project is to design a system to recognition voice commands. Most of voice recognition systems contain two main modules as follow “feature extraction" and “feature matching". In this project, MFCC algorithm is used to simulate feature extraction module. Using this algorithm, the cepstral coefficients are calculated on mel frequency scale. VQ (vector quantization) method will be used for reduction of amount of data to decrease computation time. In the feature matching stage Euclidean distance is applied as similarity criterion. Because of high accuracy of used algorithms, the accuracy of this voice command system is high. Using these algorithms, by at least 5 times repetition for each command, in a single training session, and then twice in each testing session zero error rate in recognition of commands is achieved.

Keywords: MFCC, Vector quantization, Vocal tract, Voicecommand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857
911 Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks

Authors: Sandipan Chakroborty, Anindya Roy, Goutam Saha

Abstract:

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter bank, it captures vocal tract characteristics more effectively in the lower frequency regions. This paper proposes a new set of features using a complementary filter bank structure which improves distinguishability of speaker specific cues present in the higher frequency zone. Unlike high level features that are difficult to extract, the proposed feature set involves little computational burden during the extraction process. When combined with MFCC via a parallel implementation of speaker models, the proposed feature set outperforms baseline MFCC significantly. This proposition is validated by experiments conducted on two different kinds of public databases namely YOHO (microphone speech) and POLYCOST (telephone speech) with Gaussian Mixture Models (GMM) as a Classifier for various model orders.

Keywords: Complementary Information, Filter Bank, GMM, IMFCC, MFCC, Speaker Identification, Speaker Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
910 Automatic Detection of Syllable Repetition in Read Speech for Objective Assessment of Stuttered Disfluencies

Authors: K. M. Ravikumar, Balakrishna Reddy, R. Rajagopal, H. C. Nagaraj

Abstract:

Automatic detection of syllable repetition is one of the important parameter in assessing the stuttered speech objectively. The existing method which uses artificial neural network (ANN) requires high levels of agreement as prerequisite before attempting to train and test ANNs to separate fluent and nonfluent. We propose automatic detection method for syllable repetition in read speech for objective assessment of stuttered disfluencies which uses a novel approach and has four stages comprising of segmentation, feature extraction, score matching and decision logic. Feature extraction is implemented using well know Mel frequency Cepstra coefficient (MFCC). Score matching is done using Dynamic Time Warping (DTW) between the syllables. The Decision logic is implemented by Perceptron based on the score given by score matching. Although many methods are available for segmentation, in this paper it is done manually. Here the assessment by human judges on the read speech of 10 adults who stutter are described using corresponding method and the result was 83%.

Keywords: Assessment, DTW, MFCC, Objective, Perceptron, Stuttering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499
909 Comparison of MFCC and Cepstral Coefficients as a Feature Set for PCG Biometric Systems

Authors: Justin Leo Cheang Loong, Khazaimatol S Subari, Muhammad Kamil Abdullah, Nurul Nadia Ahmad, RosliBesar

Abstract:

Heart sound is an acoustic signal and many techniques used nowadays for human recognition tasks borrow speech recognition techniques. One popular choice for feature extraction of accoustic signals is the Mel Frequency Cepstral Coefficients (MFCC) which maps the signal onto a non-linear Mel-Scale that mimics the human hearing. However the Mel-Scale is almost linear in the frequency region of heart sounds and thus should produce similar results with the standard cepstral coefficients (CC). In this paper, MFCC is investigated to see if it produces superior results for PCG based human identification system compared to CC. Results show that the MFCC system is still superior to CC despite linear filter-banks in the lower frequency range, giving up to 95% correct recognition rate for MFCC and 90% for CC. Further experiments show that the high recognition rate is due to the implementation of filter-banks and not from Mel-Scaling.

Keywords: Biometric, Phonocardiogram, Cepstral Coefficients, Mel Frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291
908 Spectral Analysis of Speech: A New Technique

Authors: Neeta Awasthy, J.P.Saini, D.S.Chauhan

Abstract:

ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET.

Keywords: Cepstral Coefficient, Distance measures, Independent Component Analysis, Linear Predictive Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
907 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze

Abstract:

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Keywords: Auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
906 Speaker Identification Using Admissible Wavelet Packet Based Decomposition

Authors: Mangesh S. Deshpande, Raghunath S. Holambe

Abstract:

Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.

Keywords: Speaker identification, Wavelet transform, Feature extraction, MFCC, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
905 Adaptive Dynamic Time Warping for Variable Structure Pattern Recognition

Authors: S. V. Yendiyarov

Abstract:

Pattern discovery from time series is of fundamental importance. Particularly, when information about the structure of a pattern is not complete, an algorithm to discover specific patterns or shapes automatically from the time series data is necessary. The dynamic time warping is a technique that allows local flexibility in aligning time series. Because of this, it is widely used in many fields such as science, medicine, industry, finance and others. However, a major problem of the dynamic time warping is that it is not able to work with structural changes of a pattern. This problem arises when the structure is influenced by noise, which is a common thing in practice for almost every application. This paper addresses this problem by means of developing a novel technique called adaptive dynamic time warping.

Keywords: Pattern recognition, optimal control, quadratic programming, dynamic programming, dynamic time warping, sintering control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
904 Neural Network Based Speech to Text in Malay Language

Authors: H. F. A. Abdul Ghani, R. R. Porle

Abstract:

Speech to text in Malay language is a system that converts Malay speech into text. The Malay language recognition system is still limited, thus, this paper aims to investigate the performance of ten Malay words obtained from the online Malay news. The methodology consists of three stages, which are preprocessing, feature extraction, and speech classification. In preprocessing stage, the speech samples are filtered using pre emphasis. After that, feature extraction method is applied to the samples using Mel Frequency Cepstrum Coefficient (MFCC). Lastly, speech classification is performed using Feedforward Neural Network (FFNN). The accuracy of the classification is further investigated based on the hidden layer size. From experimentation, the classifier with 40 hidden neurons shows the highest classification rate which is 94%.  

Keywords: Feed-Forward Neural Network, FFNN, Malay speech recognition, Mel Frequency Cepstrum Coefficient, MFCC, speech-to-text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
903 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits

Authors: Ali Ganoun

Abstract:

This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.

Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
902 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses

Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas

Abstract:

We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.

Keywords: Transient noise pulses, noise reduction, dynamic time warping, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
901 Trajectory Guided Recognition of Hand Gestures having only Global Motions

Authors: M. K. Bhuyan, P. K. Bora, D. Ghosh

Abstract:

One very interesting field of research in Pattern Recognition that has gained much attention in recent times is Gesture Recognition. In this paper, we consider a form of dynamic hand gestures that are characterized by total movement of the hand (arm) in space. For these types of gestures, the shape of the hand (palm) during gesturing does not bear any significance. In our work, we propose a model-based method for tracking hand motion in space, thereby estimating the hand motion trajectory. We employ the dynamic time warping (DTW) algorithm for time alignment and normalization of spatio-temporal variations that exist among samples belonging to the same gesture class. During training, one template trajectory and one prototype feature vector are generated for every gesture class. Features used in our work include some static and dynamic motion trajectory features. Recognition is accomplished in two stages. In the first stage, all unlikely gesture classes are eliminated by comparing the input gesture trajectory to all the template trajectories. In the next stage, feature vector extracted from the input gesture is compared to all the class prototype feature vectors using a distance classifier. Experimental results demonstrate that our proposed trajectory estimator and classifier is suitable for Human Computer Interaction (HCI) platform.

Keywords: Hand gesture, human computer interaction, key video object plane, dynamic time warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
900 Efficient DTW-Based Speech Recognition System for Isolated Words of Arabic Language

Authors: Khalid A. Darabkh, Ala F. Khalifeh, Baraa A. Bathech, Saed W. Sabah

Abstract:

Despite the fact that Arabic language is currently one of the most common languages worldwide, there has been only a little research on Arabic speech recognition relative to other languages such as English and Japanese. Generally, digital speech processing and voice recognition algorithms are of special importance for designing efficient, accurate, as well as fast automatic speech recognition systems. However, the speech recognition process carried out in this paper is divided into three stages as follows: firstly, the signal is preprocessed to reduce noise effects. After that, the signal is digitized and hearingized. Consequently, the voice activity regions are segmented using voice activity detection (VAD) algorithm. Secondly, features are extracted from the speech signal using Mel-frequency cepstral coefficients (MFCC) algorithm. Moreover, delta and acceleration (delta-delta) coefficients have been added for the reason of improving the recognition accuracy. Finally, each test word-s features are compared to the training database using dynamic time warping (DTW) algorithm. Utilizing the best set up made for all affected parameters to the aforementioned techniques, the proposed system achieved a recognition rate of about 98.5% which outperformed other HMM and ANN-based approaches available in the literature.

Keywords: Arabic speech recognition, MFCC, DTW, VAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3872
899 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based On Dynamic Time Warping

Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar

Abstract:

Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.

Keywords: Dynamic Time Warping, Glottal Area Waveform, Linear Predictive Coding, High-Speed Laryngeal Images, Hilbert Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
898 Outlier Pulse Detection and Feature Extraction for Wrist Pulse Analysis

Authors: Bhaskar Thakker, Anoop Lal Vyas

Abstract:

Wrist pulse analysis for identification of health status is found in Ancient Indian as well as Chinese literature. The preprocessing of wrist pulse is necessary to remove outlier pulses and fluctuations prior to the analysis of pulse pressure signal. This paper discusses the identification of irregular pulses present in the pulse series and intricacies associated with the extraction of time domain pulse features. An approach of Dynamic Time Warping (DTW) has been utilized for the identification of outlier pulses in the wrist pulse series. The ambiguity present in the identification of pulse features is resolved with the help of first derivative of Ensemble Average of wrist pulse series. An algorithm for detecting tidal and dicrotic notch in individual wrist pulse segment is proposed.

Keywords: Wrist Pulse Segment, Ensemble Average, Dynamic Time Warping (DTW), Pulse Similarity Vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
897 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
896 Effective Digital Music Retrieval System through Content-based Features

Authors: Bokyung Sung, Kwanghyo Koo, Jungsoo Kim, Myung-Bum Jung, Jinman Kwon, Ilju Ko

Abstract:

In this paper, we propose effective system for digital music retrieval. We divided proposed system into Client and Server. Client part consists of pre-processing and Content-based feature extraction stages. In pre-processing stage, we minimized Time code Gap that is occurred among same music contents. As content-based feature, first-order differentiated MFCC were used. These presented approximately envelop of music feature sequences. Server part included Music Server and Music Matching stage. Extracted features from 1,000 digital music files were stored in Music Server. In Music Matching stage, we found retrieval result through similarity measure by DTW. In experiment, we used 450 queries. These were made by mixing different compression standards and sound qualities from 50 digital music files. Retrieval accurate indicated 97% and retrieval time was average 15ms in every single query. Out experiment proved that proposed system is effective in retrieve digital music and robust at various user environments of web.

Keywords: Music Retrieval, Content-based, Music Feature and Digital Music.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
895 Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise DerivativeDynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
894 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
893 Development of a Wiki-based Feature Library for a Process Planning System

Authors: Hendry Muljadi, Hideaki Takeda, Koichi Ando

Abstract:

A manufacturing feature can be defined simply as a geometric shape and its manufacturing information to create the shape. In a feature-based process planning system, feature library plays an important role in the extraction of manufacturing features with their proper manufacturing information. However, to manage the manufacturing information flexibly, it is important to build a feature library that is easy to modify. In this paper, a Wiki-based feature library is proposed.

Keywords: Manufacturing feature, feature library, feature ontology, process planning, Wiki, MediaWiki.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169
892 Reduced Dynamic Time Warping for Handwriting Recognition Based on Multidimensional Time Series of a Novel Pen Device

Authors: Muzaffar Bashir, Jürgen Kempf

Abstract:

The purpose of this paper is to present a Dynamic Time Warping technique which reduces significantly the data processing time and memory size of multi-dimensional time series sampled by the biometric smart pen device BiSP. The acquisition device is a novel ballpoint pen equipped with a diversity of sensors for monitoring the kinematics and dynamics of handwriting movement. The DTW algorithm has been applied for time series analysis of five different sensor channels providing pressure, acceleration and tilt data of the pen generated during handwriting on a paper pad. But the standard DTW has processing time and memory space problems which limit its practical use for online handwriting recognition. To face with this problem the DTW has been applied to the sum of the five sensor signals after an adequate down-sampling of the data. Preliminary results have shown that processing time and memory size could significantly be reduced without deterioration of performance in single character and word recognition. Further excellent accuracy in recognition was achieved which is mainly due to the reduced dynamic time warping RDTW technique and a novel pen device BiSP.

Keywords: Biometric character recognition, biometric person authentication, biometric smart pen BiSP, dynamic time warping DTW, online-handwriting recognition, multidimensional time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
891 Development of a Semantic Wiki-based Feature Library for the Extraction of Manufacturing Feature and Manufacturing Information

Authors: Hendry Muljadi, Hideaki Takeda, Koichi Ando

Abstract:

A manufacturing feature can be defined simply as a geometric shape and its manufacturing information to create the shape. In a feature-based process planning system, feature library that consists of pre-defined manufacturing features and the manufacturing information to create the shape of the features, plays an important role in the extraction of manufacturing features with their proper manufacturing information. However, to manage the manufacturing information flexibly, it is important to build a feature library that can be easily modified. In this paper, the implementation of Semantic Wiki for the development of the feature library is proposed.

Keywords: Manufacturing feature, feature library, feature ontology, process planning, Wiki, MediaWiki, Semantic Wiki.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
890 Investigation of Combined use of MFCC and LPC Features in Speech Recognition Systems

Authors: К. R. Aida–Zade, C. Ardil, S. S. Rustamov

Abstract:

Statement of the automatic speech recognition problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determination algorithms of Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC) coefficients expressing the basic speech features are developed. Combined use of cepstrals of MFCC and LPC in speech recognition system is suggested to improve the reliability of speech recognition system. To this end, the recognition system is divided into MFCC and LPC-based recognition subsystems. The training and recognition processes are realized in both subsystems separately, and recognition system gets the decision being the same results of each subsystems. This results in decrease of error rate during recognition. The training and recognition processes are realized by artificial neural networks in the automatic speech recognition system. The neural networks are trained by the conjugate gradient method. In the paper the problems observed by the number of speech features at training the neural networks of MFCC and LPC-based speech recognition subsystems are investigated. The variety of results of neural networks trained from different initial points in training process is analyzed. Methodology of combined use of neural networks trained from different initial points in speech recognition system is suggested to improve the reliability of recognition system and increase the recognition quality, and obtained practical results are shown.

Keywords: Speech recognition, cepstral analysis, Voice activation detection algorithm, Mel Frequency Cepstral Coefficients, features of speech, Cepstral Mean Subtraction, neural networks, Linear Predictive Coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
889 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting

Authors: Analise Borg, Paul Micallef

Abstract:

Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organise the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that nonparametric analysis offer potential results as the ones mentioned in the literature.

Keywords: Audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
888 Unsupervised Feature Selection Using Feature Density Functions

Authors: Mina Alibeigi, Sattar Hashemi, Ali Hamzeh

Abstract:

Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features. In this paper, we propose a new unsupervised feature selection method which will remove redundant features from the original feature space by the use of probability density functions of various features. To show the effectiveness of the proposed method, popular feature selection methods have been implemented and compared. Experimental results on the several datasets derived from UCI repository database, illustrate the effectiveness of our proposed methods in comparison with the other compared methods in terms of both classification accuracy and the number of selected features.

Keywords: Feature, Feature Selection, Filter, Probability Density Function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
887 Dynamic Time Warping in Gait Classificationof Motion Capture Data

Authors: Adam Świtoński, Agnieszka Michalczuk, Henryk Josiński, Andrzej Polański, KonradWojciechowski

Abstract:

The method of gait identification based on the nearest neighbor classification technique with motion similarity assessment by the dynamic time warping is proposed. The model based kinematic motion data, represented by the joints rotations coded by Euler angles and unit quaternions is used. The different pose distance functions in Euler angles and quaternion spaces are considered. To evaluate individual features of the subsequent joints movements during gait cycle, joint selection is carried out. To examine proposed approach database containing 353 gaits of 25 humans collected in motion capture laboratory is used. The obtained results are promising. The classifications, which takes into consideration all joints has accuracy over 91%. Only analysis of movements of hip joints allows to correctly identify gaits with almost 80% precision.

Keywords: Biometrics, dynamic time warping, gait identification, motion capture, time series classification, quaternion distance functions, attribute ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384