Search results for: latent heat storage unit
224 The Challenges of Cloud Computing Adoption in Nigeria
Authors: Chapman Eze Nnadozie
Abstract:
Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.
Keywords: Cloud computing, data centre, infrastructure, IT resources, network, servers, virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797223 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method
Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar
Abstract:
In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.
Keywords: Stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029222 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.
Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174221 Heavy Metal Contents in Vegetable Oils of Kazakhstan Origin and Life Risk Assessment
Authors: A. E. Mukhametov, M. T. Yerbulekova, D. R. Dautkanova, G. A. Tuyakova, G. Aitkhozhayeva
Abstract:
The accumulation of heavy metals in food is a constant problem in many parts of the world. Vegetable oils are widely used, both for cooking and for processing in the food industry, meeting the main dietary requirements. One of the main chemical pollutants, heavy metals, is usually found in vegetable oils. These chemical pollutants are carcinogenic, teratogenic and immunotoxic, harmful to consumption and have a negative effect on human health even in trace amounts. Residues of these substances can easily accumulate in vegetable oil during cultivation, processing and storage. In this article, the content of the concentration of heavy metal ions in vegetable oils of Kazakhstan production is studied: sunflower, rapeseed, safflower and linseed oil. Heavy metals: arsenic, cadmium, lead and nickel, were determined in three repetitions by the method of flame atomic absorption. Analysis of vegetable oil samples revealed that the largest lead contamination (Pb) was determined to be 0.065 mg/kg in linseed oil. The content of cadmium (Cd) in the largest amount of 0.009 mg/kg was found in safflower oil. Arsenic (As) content was determined in rapeseed and safflower oils at 0.003 mg/kg, and arsenic (As) was not detected in linseed and sunflower oil. The nickel (Ni) content in the largest amount of 0.433 mg/kg was in linseed oil. The heavy metal contents in the test samples complied with the requirements of regulatory documents for vegetable oils. An assessment of the health risk of vegetable oils with a daily consumption of 36 g per day shows that all samples of vegetable oils produced in Kazakhstan are safe for consumption. But further monitoring is needed, since all these metals are toxic and their harmful effects become apparent only after several years of exposure.
Keywords: Kazakhstan, oil, safety, toxic metals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757220 Numerical Study on CO2 Pollution in an Ignition Chamber by Oxygen Enrichment
Authors: Zohreh Orshesh
Abstract:
In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aims to obtain accurate information about the profile of the combustion in the furnace and also check the effect of oxygen enrichment on the combustion process. Oxygen enrichment is an effective way to reduce combustion pollutant. The flow rate of air to fuel ratio is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. Combustion simulations typically involve the solution of the turbulent flows with heat transfer, species transport and chemical reactions. It is common to use the Reynolds-averaged form of the governing equation in conjunction with a suitable turbulence model. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.3 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Species mass fractions at the wall are assumed to have zero normal gradients.Results show that minimum mole fraction of CO2 happens when the flow rate ratio of air to fuel is 5.1. Additionally, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak. As a result, oxygen-enrichment can reduce the CO2 emission at this kind of furnace in high air to fuel rates.Keywords: Combustion chamber, Oxygen enrichment, Reynolds Averaged Navier- Stokes, CO2 emission
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533219 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water
Authors: Krishna Kumar Singh, Praveen Jain
Abstract:
Collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with higher thickness of MS media indicated recharge rate slightly more than that of all treatment with lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.
Keywords: Groundwater, medium sand-mixed storm water filter, inflow sediment load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282218 Solar Calculations of Modified Arch (Semi Spherical) Type Greenhouse System for Bayburt City
Authors: Uğur Çakır, Erol Sahin, Kemal Çomaklı, Aysegül Çokgez Kus
Abstract:
Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefitting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However, this modeling study is run for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse. The optimum azimuth angles of 400, 300, 250, 200, 150, 100, 50 m2 modified arch greenhouse are 90o, 90o, 35o, 35o, 34o, 33o and 22o while their optimum k values (ratio of length to width) are 10, 10, 10, 10, 6, 4 and 4 respectively. Positioning the buildings in order to get more solar heat energy in winter and less in summer brings out energy and money savings and increases the comfort.Keywords: Greenhousing, solar energy, direct radiation, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742217 A Multiple-Objective Environmental Rationalization and Optimization for Material Substitution in the Production of Stone-Washed Jeans- Garments
Authors: Nabil A. Ibrahim, Nabil M. Abdel Moneim, Mohamed A. Ramadan, Marwa M. Hosni
Abstract:
As the Textile Industry is the second largest industry in Egypt and as small and medium-sized enterprises (SMEs) make up a great portion of this industry therein it is essential to apply the concept of Cleaner Production for the purpose of reducing pollution. In order to achieve this goal, a case study concerned with ecofriendly stone-washing of jeans-garments was investigated. A raw material-substitution option was adopted whereby the toxic potassium permanganate and sodium sulfide were replaced by the environmentally compatible hydrogen peroxide and glucose respectively where the concentrations of both replaced chemicals together with the operating time were optimized. In addition, a process-rationalization option involving four additional processes was investigated. By means of criteria such as product quality, effluent analysis, mass and heat balance; and cost analysis with the aid of a statistical model, a process optimization treatment revealed that the superior process optima were 50%, 0.15% and 50min for H2O2 concentration, glucose concentration and time, respectively. With these values the superior process ought to reduce the annual cost by about EGP 105 relative to the currently used conventional method.Keywords: Cleaner Production, Eco-friendly of jeans garments, Stone washing, Textile Industry, Textile Wet Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073216 Statistical Analysis and Optimization of a Process for CO2 Capture
Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi
Abstract:
CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.
Keywords: Bubble column reactor, CO2 capture, Response Surface Methodology, water desalination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845215 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder
Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma
Abstract:
The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.Keywords: Ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706214 Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification
Authors: Chaouki Ghenai
Abstract:
Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending palm kernel shell (PKS) with polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel.Keywords: CFD, Combustion, Emissions, Gas Turbine Combustor, Gasification, Solid Waste, Syngas and Waste to Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3652213 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions
Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji
Abstract:
Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.Keywords: Solid lubricant, graphite, minimum quantity lubrication, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944212 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials
Authors: D. Kliaugaitė, J. K, Staniškis
Abstract:
In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE).
All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging.
Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH.
The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.
Keywords: Polymer packaging, life cycle assessment, resource efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4490211 Improving Health Care and Patient Safety at the ICU by Using Innovative Medical Devices and ICT Tools: Examples from Bangladesh
Authors: Mannan Mridha, Mohammad S. Islam
Abstract:
Innovative medical technologies offer more effective medical care, with less risk to patient and healthcare personnel. Medical technology and devices when properly used provide better data, precise monitoring and less invasive treatments and can be more targeted and often less costly. The Intensive Care Unit (ICU) equipped with patient monitoring, respiratory and cardiac support, pain management, emergency resuscitation and life support devices is particularly prone to medical errors for various reasons. Many people in the developing countries now wonder whether their visit to hospital might harm rather than help them. This is because; clinicians in the developing countries are required to maintain an increasing workload with limited resources and absence of well-functioning safety system. A team of experts from the medical, biomedical and clinical engineering in Sweden and Bangladesh have worked together to study the incidents, adverse events at the ICU in Bangladesh. The study included both public and private hospitals to provide a better understanding for physical structure, organization and practice in operating processes of care, and the occurrence of adverse outcomes the errors, risks and accidents related to medical devices at the ICU, and to develop a ICT based support system in order to reduce hazards and errors and thus improve the quality of performance, care and cost effectiveness at the ICU. Concrete recommendations and guidelines have been made for preparing appropriate ICT related tools and methods for improving the routine for use of medical devices, reporting and analyzing of the incidents at the ICU in order to reduce the number of undetected and unsolved incidents and thus improve the patient safety.
Keywords: Accidents reporting system, patient car and safety, safe medical devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816210 The Design of English Materials to communication the Identity of Amphawa District, Samut Songkram Province, for Sustainable Tourism
Authors: K. Praraththajariya
Abstract:
The main purpose of this research was to study how to communicate the identity of the Amphawa district, Samut Songkram province for sustainable tourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of the Amphawa District, Samut Songkram province is the area controlled by Amphawa sub district (submunicipality). The working unit which runs and looks after Amphawa sub district administration is known as the Amphawa mayor. This establishment was built to be a resort for normal people and tourists visiting the Amphawa district near the Maekong River consisting of rest accommodations. Along the river there is a restaurant where food and drinks are served, rich mangrove forests, a learning center, fireflies and cork trees. The Amphawa district was built to honor and commemorate King Rama II and is where the greatest number of fireflies and cork trees can be seen in Thailand from May to October each year. 2. The communication of the identity of Amphawa District, Samut Songkram Province which the researcher could find and design to present in English materials can be summed up in 5 items: 1) The history of the Amphawa District, Samut Songkram province 2) The history of King Rama II Memorial Park 3) The identity of Amphawa Floating Market 4) The Learning center of Ecosystem: Fireflies and Cork Trees 5) How to keep Amphawa District, Samut Songkram Province for sustainable tourism.Keywords: Foreigner tourists, signified, semiotics, sustainable tourism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790209 Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes
Authors: M. Tarawneh
Abstract:
Two-phase frictional pressure drop data were obtained for condensation of carbon dioxide in single horizontal micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5 to 45 bars. The saturation temperature ranged from -1.5 oC up to 10 oC. These data have then been compared against three (two-phase) frictional pressure drop prediction methods. The first method is by Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R. Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants, Annexe 1972. Then the method used by FriedelL. Improved friction pressures drop in horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould Didi et al (2001) “Prediction of two-phase pressure gradients of refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935- 947. The best available method for annular flow was that of Muller- Steinhagen and Heck. It was observed that the peak in the two-phase frictional pressure gradient is at high vapor qualities.Keywords: Two-phase flow, frictional pressure drop, horizontalmicro tube, carbon dioxide, condensers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3365208 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process
Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast
Abstract:
Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577207 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun
Authors: S. Hossainpour, A. R. Binesh
Abstract:
High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159206 A Variety of Meteorological and Geographical Characteristics Effects on Watershed Responses to a Storm Event
Authors: Wen Hui Kuan, Chia Ling Chang, Pei Shan Lui
Abstract:
The Chichiawan stream in the Wulin catchment in Taiwan is the natural habitat of Formosan landlocked salmon. Human and agriculture activities gradually worsen water quality and impact the fish habitat negatively. To protect and manage Formosan landlocked salmon habitat, it is important to understand a variety land-uses affect on the watershed responses to storms. This study discusses watershed responses to the dry-day before a storm event and a variety of land-uses in the Wulin catchment. Under the land-use planning in the Wulin catchment, the peak flows during typhoon events do not have noticeable difference. However, the nutrient exports can be highly reduced under the strategies of restraining agriculture activities. Due to the higher affinity of P for soil than that of N, the exports of TN from overall Wuling catchment were much greater than Ortho-P. Agriculture mainly centralized in subbasin A, which is the important source of nutrients in nonpoint source discharge. The subbasin A supplied about 26% of the TN and 32% of the Ortho-P discharge in 2004, despite the fact it only covers 19% area of the Wuling catchment. The subbasin analysis displayed that the agricultural subbasin A exports higher nutrients per unit area than other forest subbasins. Additionally, the agricultural subbasin A contributed a higher percentage to total Ortho-P exports compares to TN. The results of subbasin analysis might imply the transport of Ortho-P was similar to the particulate matter which was mainly influenced by the runoff and affected by the desorption from soil particles while the TN (dominated as nitrate-N) was mainly influenced by base-flow.Keywords: Chiachiawan stream, Formosan landlocked salmon, modeling, typhoon, watershed response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291205 Investigating the Effectiveness of Self-Shading Strategy on Overall Thermal Transfer Value and Window Size in High Rise Buildings
Authors: Mansour Nikpour, Mohd Zin kandar, Mohammad Ghomeshi, Nima Moeinzadeh, Mohsen Ghasemi
Abstract:
So much energy is used in high rise buildings to fulfill the basic needs of users such as lighting and thermal comfort. Malaysia has hot and humid climate, buildings especially high rise buildings receive unnecessary solar radiation that cause more solar heat gain. Energy use specially electricity consumption in high rise buildings has increased. There have been growing concerns about energy consumption and its effect on environment. Building, energy and the environment are important issues that the designers should consider to them. Self protected form is one of possible ways against the impact of solar radiation in high rise buildings. The Energy performance of building envelopes was investigated in term of the Overall Thermal Transfer Value (OTTV ).In this paper, the amount of OTTV reduction was calculated through OTTV Equations to clear the effectiveness of self shading strategy on minimizing energy consumption for cooling interior spaces in high rise buildings which has considerable envelope areas against solar radiation. Also increasing the optimum window area was investigated using self-shading strategy in designing high rise buildings. As result, the significant reduction in OTTV was shown based on WWR.In addition slight increase was demonstrated in WWR that can influence on visible comfort interior spaces.Keywords: Self-shading strategy, high rise buildings, Overall thermal transfer value (OTTV ), Window to wall ratio (WWR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829204 Linguistic Devices Reflecting Violence in Border–Provinces of Southern Thailand on the Front Page of Local and National Newspapers
Authors: Chanokporn Angsuviriya
Abstract:
The objective of the study is to analyze linguistic devices reflecting the violence in the south border provinces; namely Pattani, Yala, Narathiwat and Songkla on 1,344 front pages of three local newspapers; namely ChaoTai, Focus PhakTai and Samila Time and of two national newspapers, including ThaiRath and Matichon, between 2004 and 2005, and 2011 and 2012. The study shows that there are two important linguistic devices: 1) lexical choices consisting of the use of verbs describing violence, the use of quantitative words and the use of words naming someone who committed violent acts, and 2) metaphors consisting of “A VIOLENT PROBLEM IS HEAT”, “A VICTIM IS A LEAF”, and “A TERRORIST IS A DOG”. Comparing linguistic devices between two types of newspapers, national newspapers choose to use words more violently than local newspapers do. Moreover, they create more negative images of the south of Thailand by using stative verbs. In addition, in term of metaphors “A TERRORIST IS A FOX.” is only found in national newspapers. As regards naming terrorists “southern insurgents”, this noun phrase which is collectively called by national newspapers has strongly negative meaning. Moreover, “southern insurgents” have been perceived by the Thais in the whole country while “insurgents” that are not modified have been only used by local newspapers.
Keywords: Linguistic Devices, Local Newspapers, National Newspapers, Violence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287203 Experimental Investigation of the Effect of Compression Ratio in a Direct Injection Diesel Engine Running on Different Blends of Rice Bran Oil and Ethanol
Authors: Perminderjit Singh, Randeep Singh
Abstract:
The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio multi fuel engine when fueled with different blends of rice bran oil methyl ester and ethanol are investigated and compared with the results of standard diesel. Bio diesel produced from Rice bran oil by transesterification process has been used in this study. Experiment has been conducted at a fixed engine speed of 1500 rpm, 50% load and at compression ratios of 16.5:1, 17:1, 17.5:1 and 18:1. The impact of compression ratio on fuel consumption, brake thermal efficiency and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for waste cooking oil methyl ester when compared to that of diesel. The brake thermal efficiency at 50% load for Rice bran oil methyl ester blends and diesel has been calculated and the blend B40 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions.
Keywords: Biodiesel, Rice bran oil, Transesterification, Ethanol, Compression Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3853202 Influence of Composition and Austempering Temperature on Machinability of Austempered Ductile Iron
Authors: Jagmohan Datt, Uma Batra
Abstract:
Present investigations involve a systematic study on the machinability of austempered ductile irons (ADI) developed from four commercially viable ductile irons alloyed with different contents of 0, 0.1, 0.3 and 0.6 wt.% of Ni. The influence of Ni content, amount of retained austenite and hardness of ADI on machining behavior has been conducted systematically. Austempering heat treatment was carried out for 120 minutes at four temperatures- 270oC, 320oC, 370oC or 420oC, after austenitization at 900oC for 120 min. Milling tests were performed and machinability index, cutting forces and surface roughness measurements were used to evaluate the machinability. Higher cutting forces, lower machinability index and the poorer surface roughness of the samples austempered at lower temperatures indicated that austempering at higher temperatures resulted in better machinability. The machinability of samples austempered at 420oC, which contained higher fractions of retained austenite, was superior to that of samples austempered at lower temperatures, indicating that hardness is an important factor in assessing machinability in addition to high carbon austenite content. The ADI with 0.6% Ni, austempered at 420°C for 120 minutes, demonstrated best machinability.
Keywords: Austempering, machinability, machining index, cutting force, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383201 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement
Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana
Abstract:
The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.
Keywords: One-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703200 A Modern Review of the Spintronic Technology: Fundamentals, Materials, Devices, Circuits, Challenges, and Current Research Trends
Authors: Muhibul Haque Bhuyan
Abstract:
Spintronic, also termed spin electronics or spin transport electronics, is a kind of new technology, which exploits the two fundamental degrees of freedom- spin-state and charge-state of electrons to enhance the operational speed for the data storage and transfer efficiency of the device. Thus, it seems an encouraging technology to combat most of the prevailing complications in orthodox electron-based devices. This novel technology possesses the capacity to mix the semiconductor microelectronics and magnetic devices’ functionalities into one integrated circuit. Traditional semiconductor microelectronic devices use only the electronic charge to process the information based on binary numbers, 0 and 1. Due to the incessant shrinking of the transistor size, we are reaching the final limit of 1 nm or so. At this stage, the fabrication and other device operational processes will become challenging as the quantum effect comes into play. In this situation, we should find an alternative future technology, and spintronic may be such technology to transfer and store information. This review article provides a detailed discussion of the spintronic technology: fundamentals, materials, devices, circuits, challenges, and current research trends. At first, the fundamentals of spintronics technology are discussed. Then types, properties, and other issues of the spintronic materials are presented. After that, fabrication and working principles, as well as application areas and advantages/disadvantages of spintronic devices and circuits, are explained. Finally, the current challenges, current research areas, and prospects of spintronic technology are highlighted. This is a new paradigm of electronic cum magnetic devices built on the charge and spin of the electrons. Modern engineering and technological advances in search of new materials for this technology give us hope that this would be a very optimistic technology in the upcoming days.
Keywords: Spintronic technology, spin, charge, magnetic devices, spintronic devices, spintronic materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750199 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method
Authors: W. Swiderski
Abstract:
In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.Keywords: Composite material, ultrasonic, infrared thermography, non-destructive testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842198 Modelling and Dimension Analysis of a Multipurpose Convertible Laptop Table Using Autodesk Fusion 360
Authors: Nitesh Pandey, Manish Kumar, Pankaj Gupta, Amit Kumar Srivastava
Abstract:
The convertible table is a versatile and adaptable item designed to provide numerous solutions in one. The design incorporates numerous features that offer both ease and functionality. The description of the versatile convertible table in this overview encompasses a range of features that can be tailored to accommodate various user requirements. With its changeable functionality, this piece can easily transform into a workstation, dining table, or coffee table to suit various needs. Significantly, this multipurpose convertible laptop table includes a specific section for electronic devices such as computers and tablets, offering convenience for remote workers and online learners. In addition, providing storage space for essential equipment promotes a tidy workspace by facilitating the organization of many items. The integrated flash system offers supplementary illumination for dimly lit surroundings, while the cooling fans prevent the table's surface from overheating in hot weather or during prolonged laptop usage, making it an optimal and superior choice for laptop users. In order to cater to the needs of students, painters, and other individuals who require writing tools on a regular basis, a pencil and pen stand is included, hence enhancing the versatility of the table. The scissor lift mechanism allows for easy modifications in height, making it convenient to customize usage and providing the option of using it as a standing desk. Overall, this convertible table exemplifies its ability to adapt, its user-friendly nature, and its usefulness in a wide range of situations and settings.
Keywords: Furniture design, laptop stand, study table, learning tool, furniture manufacturing, contemporary design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157197 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model
Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth
Abstract:
This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159196 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing
Authors: Daniel M. Muntean, Viorel Ungureanu
Abstract:
More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.
Keywords: Adaptive building, energy efficiency, retrofitting, residential buildings, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035195 Water Security in Rural Areas through Solar Energy in Baja California Sur, Mexico
Authors: Luis F. Beltrán-Morales, Dalia Bali Cohen, Enrique Troyo-Diéguez, Gerzaín Avilés Polanco, Victor Sevilla Unda
Abstract:
This study aims to assess the potential of solar energy technology for improving access to water and hence the livelihood strategies of rural communities in Baja California Sur, Mexico. It focuses on livestock ranches and photovoltaic water-pumptechnology as well as other water extraction methods. The methodology used are the Sustainable Livelihoods and the Appropriate Technology approaches. A household survey was applied in June of 2006 to 32 ranches in the municipality, of which 22 used PV pumps; and semi-structured interviews were conducted. Findings indicate that solar pumps have in fact helped people improve their quality of life by allowing them to pursue a different livelihood strategy and that improved access to water -not necessarily as more water but as less effort to extract and collect it- does not automatically imply overexploitation of the resource; consumption is based on basic needs as well as on storage and pumping capacity. Justification for such systems lies in the avoidance of logistical problems associated to fossil fuels, PV pumps proved to be the most beneficial when substituting gasoline or diesel equipment but of dubious advantage if intended to replace wind or gravity systems. Solar water pumping technology-s main obstacle to dissemination are high investment and repairs costs and it is therefore not suitable for all cases even when insolation rates and water availability are adequate. In cases where affordability is not an obstacle it has become an important asset that contributes –by means of reduced expenses, less effort and saved time- to the improvement of livestock, the main livelihood provider for these ranches.
Keywords: Solar Pumps, Water Security, Livestock Ranches, Sustainable Livelihoods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573