Search results for: Simulation errors.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3829

Search results for: Simulation errors.

1459 Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes

Authors: R. Faiez, M. Mashhoudi, F. Najafi

Abstract:

Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermocapillary flow affects inversely the phase boundaries of distinct shapes. The inhomogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow.

Keywords: Computer simulation, fluid flow, interface shape, thermocapillary effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
1458 Empirical Mode Decomposition Based Multiscale Analysis of Physiological Signal

Authors: Young-Seok Choi

Abstract:

We present a refined multiscale Shannon entropy for analyzing electroencephalogram (EEG), which reflects the underlying dynamics of EEG over multiple scales. The rationale behind this method is that neurological signals such as EEG possess distinct dynamics over different spectral modes. To deal with the nonlinear and nonstationary nature of EEG, the recently developed empirical mode decomposition (EMD) is incorporated, allowing a decomposition of EEG into its inherent spectral components, referred to as intrinsic mode functions (IMFs). By calculating the Shannon entropy of IMFs in a time-dependent manner and summing them over adaptive multiple scales, it results in an adaptive subscale entropy measure of EEG. Simulation and experimental results show that the proposed entropy properly reveals the dynamical changes over multiple scales.

Keywords: EEG, subscale entropy, Empirical mode decomposition, Intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
1457 Manipulation of Image Segmentation Using Cleverness Artificial Bee Colony Approach

Authors: Y. Harold Robinson, E. Golden Julie, P. Joyce Beryl Princess

Abstract:

Image segmentation is the concept of splitting the images into several images. Image Segmentation algorithm is used to manipulate the process of image segmentation. The advantage of ABC is that it conducts every worldwide exploration and inhabitant exploration for iteration. Particle Swarm Optimization (PSO) and Evolutionary Particle Swarm Optimization (EPSO) encompass a number of search problems. Cleverness Artificial Bee Colony algorithm has been imposed to increase the performance of a neighborhood search. The simulation results clearly show that the presented ABC methods outperform the existing methods. The result shows that the algorithms can be used to implement the manipulator for grasping of colored objects. The efficiency of the presented method is improved a lot by comparing to other methods.

Keywords: Color information, EPSO, ABC, image segmentation, particle swarm optimization, active contour, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
1456 LQR and SMC Stabilization of a New Unmanned Aerial Vehicle

Authors: Kaan T. Oner, Ertugrul Cetinsoy, Efe Sirimoglu, Cevdet Hancer, Taylan Ayken, Mustafa Unel

Abstract:

We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the vehicle and control of its altitude have been designed and implemented via simulations. In particular, an LQR controller has been shown to be quite effective in the vertical flight mode for all possible yaw angles. A sliding mode controller (SMC) with recursive nature has also been proposed to stabilize the vehicle-s attitude and altitude. Simulation results show that proposed controllers provide satisfactory performance in achieving desired maneuvers.

Keywords: UAV, VTOL, dynamic model, stabilization, LQR, SMC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
1455 Bridgeless Boost Power Factor Correction Rectifier with Hold-Up Time Extension Circuit

Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Yuan-Jhen Siao

Abstract:

A bridgeless boost (BLB) power factor correction (PFC) rectifier with hold-up time extension circuit is proposed in this paper. A full bridge rectifier is widely used in the front end of the ac/dc converter. Since the shortcomings of the full bridge rectifier, the bridgeless rectifier is developed. A BLB rectifier topology is utilized with the hold-up time extension circuit. Unlike the traditional hold-up time extension circuit, the proposed extension scheme uses fewer active switches to achieve a longer hold-up time. Simulation results are presented to verify the converter performance.

Keywords: Bridgeless boost, boost converter, power factor correction, hold-up time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
1454 Back Bone Node Based Black Hole Detection Mechanism in Mobile Ad Hoc Networks

Authors: Nidhi Gupta, Sanjoy Das, Khushal Singh

Abstract:

Mobile Ad hoc Network is a set of self-governing nodes which communicate through wireless links. Dynamic topology MANETs makes routing a challenging task. Various routing protocols are there, but due to various fundamental characteristic open medium, changing topology, distributed collaboration and constrained capability, these protocols are tend to various types of security attacks. Black hole is one among them. In this attack, malicious node represents itself as having the shortest path to the destination but that path not even exists. In this paper, we aim to develop a routing protocol for detection and prevention of black hole attack by modifying AODV routing protocol. This protocol is able to detect and prevent the black hole attack. Simulation is done using NS-2, which shows the improvement in network performance.

Keywords: Ad hoc, AODV, Back Bone, routing, Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
1453 Neural Network Imputation in Complex Survey Design

Authors: Safaa R. Amer

Abstract:

Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design

Keywords: Complex survey, estimate, imputation, neural networks, variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
1452 UWB Bowtie Slot Antenna for Breast Cancer Detection

Authors: N. Seladji-Hassaine, L. Merad, S.M. Meriah, F.T. Bendimerad

Abstract:

UWB is a very attractive technology for many applications. It provides many advantages such as fine resolution and high power efficiency. Our interest in the current study is the use of UWB radar technique in microwave medical imaging systems, especially for early breast cancer detection. The Federal Communications Commission FCC allowed frequency bandwidth of 3.1 to 10.6 GHz for this purpose. In this paper we suggest an UWB Bowtie slot antenna with enhanced bandwidth. Effects of varying the geometry of the antenna on its performance and bandwidth are studied. The proposed antenna is simulated in CST Microwave Studio. Details of antenna design and simulation results such as return loss and radiation patterns are discussed in this paper. The final antenna structure exhibits good UWB characteristics and has surpassed the bandwidth requirements.

Keywords: Ultra Wide Band (UWB), microwave imaging system, Bowtie antenna, return loss, impedance bandwidth enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3964
1451 Mode-Locked Fiber Laser Using Charcoal and Graphene Saturable Absorbers to Generate 20-GHz and 50-GHz Pulse Trains, Respectively

Authors: Ashiq Rahman, Sunil Thapa, Shunyao Fan, Niloy K. Dutta

Abstract:

A 20-GHz and a 50-GHz pulse train are generated using a fiber ring laser setup that incorporates rational harmonic mode-locking (RHML). Two separate experiments were carried out using charcoal nanoparticles and graphene nanoparticles acting as saturable absorbers to reduce the pulse width generated from RHML. Autocorrelator trace shows that the pulse width is reduced from 5.6 ps to 3.2 ps using charcoal at 20 GHz, and to 2.7 ps using graphene at 50-GHz repetition rates, which agrees with the simulation findings. Numerical simulations have been carried out to study the effect of varying the linear and nonlinear absorbance parameters of both absorbers on output pulse widths. Experiments closely agree with the simulations.

Keywords: Fiber optics, fiber lasers, mode locking, saturable absorbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217
1450 Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter

Authors: Roshan Sharma, Bjørn Glemmestad

Abstract:

In gas lifted oil fields, the lift gas should be distributed optimally among the wells which share gas from a common source to maximize total oil production. One of the objectives of the paper is to show that a linear MPC consisting of a control objective and an economic objective can be used both as an optimizer and a controller for gas lifted systems. The MPC is based on linearized model of the oil field developed from first principles modeling. Simulation results show that the total oil production is increased by 3.4%. Difficulties in accurately measuring the bottom hole pressure using sensors in harsh operating conditions can be resolved by using an Unscented Kalman Filter (UKF) for estimation. In oil fields where input disturbance (total supply of gas) is not measured, UKF can also be used for disturbance estimation. Increased total oil production due to optimization leads to increased profit.

Keywords: gas lift, MPC, oil production, optimization, Unscented Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
1449 Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria

Authors: M. Ouagued, A. Khellaf

Abstract:

The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.

Keywords: Direct solar irradiance, solar radiation in Algeria, solar parabolic trough collector, heat balance, thermal oil performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3636
1448 Assessment of the Accuracy of Spalart-Allmaras Turbulence Model for Application in Turbulent Wall Jets

Authors: A. M. Tahsini

Abstract:

The Spalart and Allmaras turbulence model has been implemented in a numerical code to study the compressible turbulent flows, which the system of governing equations is solved with a finite volume approach using a structured grid. The AUSM+ scheme is used to calculate the inviscid fluxes. Different benchmark problems have been computed to validate the implementation and numerical results are shown. A special Attention is paid to wall jet applications. In this study, the jet is submitted to various wall boundary conditions (adiabatic or uniform heat flux) in forced convection regime and both two-dimensional and axisymmetric wall jets are considered. The comparison between the numerical results and experimental data has given the validity of this turbulence model to study the turbulent wall jets especially in engineering applications.

Keywords: Wall Jet, Heat transfer, Numerical Simulation, Spalart-Allmaras Turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
1447 MAS Simulations of Optical Antenna Structures

Authors: K.Tavzarashvili, G.Ghvedashili

Abstract:

A semi-analytic boundary discretization method, the Method of Auxiliary Sources (MAS) is used to analyze Optical Antennas consisting of metallic parts. In addition to standard dipoletype antennas, consisting of two pieces of metal, a new structure consisting of a single metal piece with a tiny groove in the center is analyzed. It is demonstrated that difficult numerical problems are caused because optical antennas exhibit strong material dispersion, loss, and plasmon-polariton effects that require a very accurate numerical simulation. This structure takes advantage of the Channel Plasmon-Polariton (CPP) effect and exhibits a strong enhancement of the electric field in the groove. Also primitive 3D antenna model with spherical nano particles is analyzed.

Keywords: optical antenna, channel plasmon-polariton, computational physics, Method of Auxiliary Sources

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1446 Air Flows along Perforated Metal Plates with the Heat Transfer

Authors: K. Fraňa, S. Simon

Abstract:

The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered.

Keywords: Perforations, convective heat transfers, turbulent flows, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
1445 A New Muscle Architecture Model with Non-Uniform Distribution of Muscle Fiber Types

Authors: Javier Navallas, Armando Malanda, Luis Gila, Javier Rodriguez, Ignacio Rodriguez

Abstract:

According to previous studies, some muscles present a non-homogeneous spatial distribution of its muscle fiber types and motor unit types. However, available muscle models only deal with muscles with homogeneous distributions. In this paper, a new architecture muscle model is proposed to permit the construction of non-uniform distributions of muscle fibers within the muscle cross section. The idea behind is the use of a motor unit placement algorithm that controls the spatial overlapping of the motor unit territories of each motor unit type. Results show the capabilities of the new algorithm to reproduce arbitrary muscle fiber type distributions.

Keywords: muscle model, muscle architecture, motor unit, EMG simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1444 Mechanical and Chemical Reliability Assessment of Silica Optical Fibres

Authors: Irina Severin, M. Caramihai, K. Chung, G. Tasca, T. Park

Abstract:

The current study has investigated the ageing phenomena of silica optical fibres in relation to water activity which might be accelerated when exposed to a supplementary energy, such as microwaves. A controlled stress by winding fibres onto accurate diameter mandrel was applied. Taking into account that normally a decrease in fibre strength is induced in time by chemical action of water, the effects of cumulative reagents such as: water, applied stress and supplementary energy (microwave) in some cases acted in the opposite manner. The microwave effect as a structural relaxation catalyst appears unexpected, even if the overall gain in fibre strength is not high, but the stress corrosion factor revealed significant increase in certain simulation conditions.

Keywords: optical fibres, mechanical testing, aging, microwave, structural relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
1443 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen

Abstract:

Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.

Keywords: Smart structures, piezolamintes, material nonlinearity, geometric nonlinearity, strong electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
1442 Research on Maintenance Design Method based Virtual Maintenance

Authors: Yunbin Yang, Liangli He, Fengjun Wang

Abstract:

The essentiality of maintenance assessment and maintenance optimization in design stage is analyzed, and the existent problems of conventional maintenance design method are illuminated. MDMVM (Maintenance Design Method based Virtual Maintenance) is illuminated, and the process of MDMVM established, and the MDMVM architecture is given out. The key techniques of MDMVM are analyzed, and include maintenance design based KBE (Knowledge Based Engineering) and virtual maintenance based physically attribute. According to physical property, physically based modeling, visual object movement control, the simulation of operation force and maintenance sequence planning method are emphatically illuminated. Maintenance design system based virtual maintenance is established in foundation of maintenance design method.

Keywords: Digital mock-up, virtual maintenance, knowledge engineering, maintenance sequence planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
1441 Sensitivity of Input Blocking Capacitor on Output Voltage and Current of a PV Inverter Employing IGBTs

Authors: Z.A. Jaffery, Vinay Kumar Chandna, Sunil Kumar Chaudhary

Abstract:

This paper present a MATLAB-SIMULINK model of a single phase 2.5 KVA, 240V RMS controlled PV VSI (Photovoltaic Voltage Source Inverter) inverter using IGBTs (Insulated Gate Bipolar Transistor). The behavior of output voltage, output current, and the total harmonic distortion (THD), with the variation in input dc blocking capacitor (Cdc), for linear and non-linear load has been analyzed. The values of Cdc as suggested by the other authors in their papers are not clearly defined and it poses difficulty in selecting the proper value. As the dc power stored in Cdc, (generally placed parallel with battery) is used as input to the VSI inverter. The simulation results shows the variation in the output voltage and current with different values of Cdc for linear and non-linear load connected at the output side of PV VSI inverter and suggest the selection of suitable value of Cdc.

Keywords: DC Blocking capacitor, IGBTs, PV VSI, THD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
1440 Fast Complex Valued Time Delay Neural Networks

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

Here, a new idea to speed up the operation of complex valued time delay neural networks is presented. The whole data are collected together in a long vector and then tested as a one input pattern. The proposed fast complex valued time delay neural networks uses cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically that the number of computation steps required for the presented fast complex valued time delay neural networks is less than that needed by classical time delay neural networks. Simulation results using MATLAB confirm the theoretical computations.

Keywords: Fast Complex Valued Time Delay Neural Networks, Cross Correlation, Frequency Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
1439 Using Genetic Algorithms in Closed Loop Identification of the Systems with Variable Structure Controller

Authors: O.M. Mohamed vall, M. Radhi

Abstract:

This work presents a recursive identification algorithm. This algorithm relates to the identification of closed loop system with Variable Structure Controller. The approach suggested includes two stages. In the first stage a genetic algorithm is used to obtain the parameters of switching function which gives a control signal rich in commutations (i.e. a control signal whose spectral characteristics are closest possible to those of a white noise signal). The second stage consists in the identification of the system parameters by the instrumental variable method and using the optimal switching function parameters obtained with the genetic algorithm. In order to test the validity of this algorithm a simulation example is presented.

Keywords: Closed loop identification, variable structure controller, pseud-random binary sequence, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
1438 Frequency-Dependent and Full Range Tunable Phase Shifter

Authors: Yufu Yin, Tao Lin, Shanghong Zhao, Zihang Zhu, Xuan Li, Wei Jiang, Qiurong Zheng, Hui Wang

Abstract:

In this paper, a frequency-dependent and tunable phase shifter is proposed and numerically analyzed. The key devices are the dual-polarization binary phase shift keying modulator (DP-BPSK) and the fiber Bragg grating (FBG). The phase-frequency response of the FBG is employed to determine the frequency-dependent phase shift. The simulation results show that a linear phase shift of the recovered output microwave signal which depends on the frequency of the input RF signal is achieved. In addition, by adjusting the power of the RF signal, the full range phase shift from 0° to 360° can be realized. This structure shows the spurious free dynamic range (SFDR) of 70.90 dB·Hz2/3 and 72.11 dB·Hz2/3 under different RF powers.

Keywords: Microwave photonics, phase shifter, spurious free dynamic range, frequency-dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
1437 A Pipelined FSBM Hardware Architecture for HTDV-H.26x

Authors: H. Loukil, A. Ben Atitallah, F. Ghozzi, M. A. Ben Ayed, N. Masmoudi

Abstract:

In MPEG and H.26x standards, to eliminate the temporal redundancy we use motion estimation. Given that the motion estimation stage is very complex in terms of computational effort, a hardware implementation on a re-configurable circuit is crucial for the requirements of different real time multimedia applications. In this paper, we present hardware architecture for motion estimation based on "Full Search Block Matching" (FSBM) algorithm. This architecture presents minimum latency, maximum throughput, full utilization of hardware resources such as embedded memory blocks, and combining both pipelining and parallel processing techniques. Our design is described in VHDL language, verified by simulation and implemented in a Stratix II EP2S130F1020C4 FPGA circuit. The experiment result show that the optimum operating clock frequency of the proposed design is 89MHz which achieves 160M pixels/sec.

Keywords: SAD, FSBM, Hardware Implementation, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1436 Economic Dispatch Fuzzy Linear Regression and Optimization

Authors: A. K. Al-Othman

Abstract:

This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.

Keywords: Economic Dispatch, Fuzzy Linear Regression (FLP)and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
1435 Joint Optimization of Pricing and Advertisement for Seasonal Branded Products

Authors: Mohammad Modarres, Shirin Aslani

Abstract:

The goal of this paper is to develop a model to integrate “pricing" and “advertisement" for short life cycle products, such as branded fashion clothing products. To achieve this goal, we apply the concept of “Dynamic Pricing". There are two classes of advertisements, for the brand (regardless of product) and for a particular product. Advertising the brand affects the demand and price of all the products. Thus, the model considers all these products in relation with each other. We develop two different methods to integrate both types of advertisement and pricing. The first model is developed within the framework of dynamic programming. However, due to the complexity of the model, this method cannot be applicable for large size problems. Therefore, we develop another method, called hieratical approach, which is capable of handling the real world problems. Finally, we show the accuracy of this method, both theoretically and also by simulation.

Keywords: Advertising, Dynamic programming, Dynamic pricing, Promotion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
1434 State-Space PD Feedback Control

Authors: John Florescu

Abstract:

A challenged control problem is when the performance is pushed to the limit. The state-derivative feedback control strategy directly uses acceleration information for feedback and state estimation. The derivative part is concerned with the rateof- change of the error with time. If the measured variable approaches the set point rapidly, then the actuator is backed off early to allow it to coast to the required level. Derivative action makes a control system behave much more intelligently. A sensor measures the variable to be controlled and the measured in formation is fed back to the controller to influence the controlled variable. A high gain problem can be also formulated for proportional plus derivative feedback transformation. Using MATLAB Simulink dynamic simulation tool this paper examines a system with a proportional plus derivative feedback and presents an automatic implementation of finding an acceptable controlled system. Using feedback transformations the system is transformed into another system.

Keywords: Feedback, PD, state-space, derivative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
1433 Dempster-Shafer Information Filtering in Multi-Modality Wireless Sensor Networks

Authors: D.M. Weeraddana, K.S. Walgama, E.C. Kulasekere

Abstract:

A framework to estimate the state of dynamically varying environment where data are generated from heterogeneous sources possessing partial knowledge about the environment is presented. This is entirely derived within Dempster-Shafer and Evidence Filtering frameworks. The belief about the current state is expressed as belief and plausibility functions. An addition to Single Input Single Output Evidence Filter, Multiple Input Single Output Evidence Filtering approach is introduced. Variety of applications such as situational estimation of an emergency environment can be developed within the framework successfully. Fire propagation scenario is used to justify the proposed framework, simulation results are presented.

Keywords: Dempster-Shafer Belief theory, Evidence Filtering, Evidence Fusion, Sensor Modalities, Wireless Sensor Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
1432 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2657
1431 Inverter Based Gain-Boosting Fully Differential CMOS Amplifier

Authors: Alpana Agarwal, Akhil Sharma

Abstract:

This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7o with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs.

Keywords: CMOS amplifier, gain boosting, inverter-based amplifier, self-biased inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2587
1430 Stack Ventilation for an Office Building with a Multi-Story Atrium

Authors: Karina Natali, Wei-Hwa Chiang

Abstract:

This study examines the stack ventilation performance of an office building located in Taipei, Taiwan. Atriums in this building act as stacks that facilitate buoyancy-driven ventilation. Computational Fluid Dynamic (CFD) simulations are used to identify interior airflow patterns, and then used these patterns to assess the building’s heat expulsion efficiency. Ambient temperatures of 20°C were adopted as the typical seasonal spring temperature range in Taipei. Further, “zero-wind” conditions are established to ensure simulation results reflected only the buoyancy effect. After checking results against neutral pressure level (NPL) level, airflow, air velocity, and indoor temperature stratification, the lower stack is modified to reduce the NPL in order to remove heat accumulated on the top floor.

Keywords: Natural ventilation, side outlet, stack effect, thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980