MAS Simulations of Optical Antenna Structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
MAS Simulations of Optical Antenna Structures

Authors: K.Tavzarashvili, G.Ghvedashili

Abstract:

A semi-analytic boundary discretization method, the Method of Auxiliary Sources (MAS) is used to analyze Optical Antennas consisting of metallic parts. In addition to standard dipoletype antennas, consisting of two pieces of metal, a new structure consisting of a single metal piece with a tiny groove in the center is analyzed. It is demonstrated that difficult numerical problems are caused because optical antennas exhibit strong material dispersion, loss, and plasmon-polariton effects that require a very accurate numerical simulation. This structure takes advantage of the Channel Plasmon-Polariton (CPP) effect and exhibits a strong enhancement of the electric field in the groove. Also primitive 3D antenna model with spherical nano particles is analyzed.

Keywords: optical antenna, channel plasmon-polariton, computational physics, Method of Auxiliary Sources

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078951

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921

References:


[1] S.Kiihn, U.Hakanson, L.Rogobete, V.Sandoghdar, "Enancement of single-molecule fluerescence using a gold nanoparticle as an optical nanoantenna" Phys. Rev. Lett. 97, 017402 (2006).
[2] P. Miihlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, "Resonant optical antennas" Science 308, 1607 (2005).
[3] J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[4] A.Taflove, and S.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain method, Artech House, 2005.
[5] Christian Hafner, Cui Xudong, Andre Bertolace, Radiger Vahldieck, Frequency-domain simulations of optical antenna structures, Proc. of SPIE Vol. 6617 66170E-1, 2007
[6] Kupradze V. About Approximates Solution Mathematical Physics Problem. Success of Mathematical Sciences, Moscow. 22. N2 1967
[7] Ch. Hafner, "Post-modem Electromagnetics Using Intelligent MaXwell Solvers", John Wiley & Sons, 1999.
[8] Yasuura K. (1961) J. Inst. Elec. Communun. Eng. Jap. 44(6), 901-909.
[9] Richmond J.H. IEEE Trans. Microwave Theory and Techn-y, 13, nom. 4, 1961.
[10] Millar. Proc.Cambr.Phil.Soc,1969,v.65, p.'7'73.
[11] Waterman P.C. New form-ion of acoustic scat. J.Acoust. Soc. Amer, 417. (1969)
[12] E. K. Miller, "Model-Based Parameter Estimation in Electromagnetics" IEEE-AP40,No.1, Feb.1998.
[13] K. Tavzarashvili, et al., "Model-Based Parameter Estimation (MBPE) for Metallic Photonic Crystal Filters," ACES, vol.4, 2007.
[14] E. Moreno, et al., "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, No. 23, 3447-3449 (2006).
[15] J.Smajic, Ch.Hafner, K.Tavzarashvili, and R.Vahldieck, Numerical Analysis of Channel Plasmon PolaritonsEnhanced Optical Antennas, ACES, Vol.5, 1-10, 2008
[16] J.Smajic, Ch.Hafner, L.Raguin, K.Tavzarashvili, and M.Mishrikey, Comparison of Numerical Methods for the Analysis of Plasmonic Structures, ACES, Vol.6, 1-12, 2009
[17] P.Jonson and R.Christy, Phys. Rev. B 6, 4370, 1972