Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Empirical Mode Decomposition Based Multiscale Analysis of Physiological Signal
Authors: Young-Seok Choi
Abstract:
We present a refined multiscale Shannon entropy for analyzing electroencephalogram (EEG), which reflects the underlying dynamics of EEG over multiple scales. The rationale behind this method is that neurological signals such as EEG possess distinct dynamics over different spectral modes. To deal with the nonlinear and nonstationary nature of EEG, the recently developed empirical mode decomposition (EMD) is incorporated, allowing a decomposition of EEG into its inherent spectral components, referred to as intrinsic mode functions (IMFs). By calculating the Shannon entropy of IMFs in a time-dependent manner and summing them over adaptive multiple scales, it results in an adaptive subscale entropy measure of EEG. Simulation and experimental results show that the proposed entropy properly reveals the dynamical changes over multiple scales.Keywords: EEG, subscale entropy, Empirical mode decomposition, Intrinsic mode function.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1106991
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718References:
[1] G. Buzs´aki, Rhythms of the brain, Oxford: Oxford University Press, 2006.
[2] D. S. Bassett, and E. T. Bullmore, “Human brain networks in health and disease,” Current Opinion in Neuro., vol. 22, pp. 340–347, 2009.
[3] L. S. Prichep, A. Jacquin, J. Filipenko, S. G. Dastidar, S. Zabele, A. Vodencarevic, and N. S. Rothman, “Classification of traumatic brain injury severity using informed data reduction in a series of binary classifier algorithms,” IEEE Trans. Neural Syst. and Rehab. Eng., vol. 20, no. 6, pp. 806–822, Dec. 2012.
[4] R. Ferenets, T. Lipping, A. Anier, V. J¨antti, S. Melto, and S. Hovilehto, “Comparison of entropy and complexity measures for the assessment of depth of sedation,” IEEE Trans. Biomed. Eng., vol. 53, no. 6, pp. 1067–1077, June 2006.
[5] C. Cao and S. Slobounov, “Application of a novel measure of EEG nonstationarity as Shannon-entropy of the peak frequency shifting for detecting residual abnormalities in concussed individuals,” Clin. Neurophysilo., vol. 122, no. 7, pp. 1314–1321, Jul. 2011.
[6] C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379-423, 1948.
[7] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, and Q. Zheng, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings: Mathematical, Physical and Engineering Sciences., vol. 454, pp 903–995, 1998.
[8] H. Liang, S. L. Bressler, R. Desimone, and P. Fries, “Empirical mode decomposition: a method for analyzing neural data,” Neurocomputing, vol. 65, pp. 801–807, 2005.
[9] C. M. Sweeney-Reed and S. J. Nasuto, “A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition,” J. Comput. Neurosci,, vol. 23, no. 1, pp. 79–111, Aug. 2007.
[10] Y.-S. Choi, M. Koenig, X. Jia, and N. Thakor, “Quantifying time-varying multiunit neural activity using entropy-based measures,” IEEE Trans. Biomed. Eng., vol. 57, no. 11, pp. 2771–2777, Nov. 2010.
[11] L. Katz, U. Ebmeyer, P. Safar, A. Radovsky, and R. Neumar, “Outcome model of asphyxial cardiac arrest in rats,” J. Cereb. Blood Flow Metab., vol. 15, pp. 1032-1039, Nov. 1995.