Search results for: recycling barrier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 327

Search results for: recycling barrier

117 Valorization of Beer Brewing Wastes by Composting

Authors: M. E. Silva, I. Brás

Abstract:

The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored by evaluating standard physical and chemical parameters. The compost quality was assessed by the heavy metals content and phytotoxicity. Both piles reached a thermophilic phase in the first day, however having different trends. The pH showed a slight alkaline character. The C/N reached values lower than 19 at the end of composting process. Generally, all the piles exhibited absence of heavy metals. However, the pile SM exhibited phytotoxicity. This study showed that RYDE slurry can be valorized by composting with cow manure.

Keywords: Beer brewing wastes, compost; quality, valorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
116 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth

Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie

Abstract:

Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.

Keywords: Spent bleaching earth, Regeneration, Dye removal, Thermodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
115 Structure and Properties of Meltblown Polyetherimide as High Temperature Filter Media

Authors: Gajanan Bhat, Vincent Kandagor, Daniel Prather, Ramesh Bhave

Abstract:

Polyetherimide (PEI), an engineering plastic with very high glass transition temperature and excellent chemical and thermal stability, has been processed into a controlled porosity filter media of varying pore size, performance, and surface characteristics. A special grade of the PEI was processed by melt blowing to produce microfiber nonwovens suitable as filter media. The resulting microfiber webs were characterized to evaluate their structure and properties. The fiber webs were further modified by hot pressing, a post processing technique, which reduces the pore size in order to improve the barrier properties of the resulting membranes. This ongoing research has shown that PEI can be a good candidate for filter media requiring high temperature and chemical resistance with good mechanical properties. Also, by selecting the appropriate processing conditions, it is possible to achieve desired filtration performance from this engineering plastic.

Keywords: Nonwovens, melt blowing, polyehterimide, filter media, microfibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
114 Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil

Authors: R. Ziaie Moayed, H. Keshavarz Hedayati

Abstract:

Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.

Keywords: Bentonite, zeolite, leachate, shear strength parameters, unconfined compression tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
113 The Applicability of Distillation as an Alternative Nuclear Reprocessing Method

Authors: Dominik Böhm, Konrad Czerski

Abstract:

A customized two-stage model has been developed to simulate, analyse, and visualize distillation of actinides as a useful alternative low-pressure separation method in the nuclear recycling cases. Under the most optimal conditions of idealized thermodynamic equilibrium stages and under total reflux of distillate the investigated cases of chloride systems for the separation of such actinides are (A) UCl4-CsCl-PuCl3 and (B) ThCl4-NaCl-PuCl3. Simulatively, uranium tetrachloride in case A is successfully separated by distillation into a six-stage distillation column, and thorium tetrachloride from case B into an eight-stage distillation column. For this, a permissible mole fraction value of 1E-06 has been assumed for the residual impurification degree. With further separation effort of eleven to seventeen required separation stages, the monochlorides of plutonium trichloride from both systems A and B are simulatively shown to be separated as high pure distillation products.

Keywords: Conceptual design of a pyroprocessing unit, molten salt recovery, simulation of total-reflux distillation column, used nuclear fuel reprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 559
112 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili

Abstract:

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

Keywords: Acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3750
111 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: Quantum semiconductors, nanostructures, quantum dots, spin polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
110 Optimal Water Conservation in a Mechanical Cooling Tower Operations

Authors: M. Boumaza, Y. Bakhabkhi

Abstract:

Water recycling represents an important challenge for many countries, in particular in countries where this natural resource is rare. On the other hand, in many operations, water is used as a cooling medium, as a high proportion of water consumed in industry is used for cooling purposes. Generally this water is rejected directly to the nature. This reject will cause serious environment damages as well as an important waste of this precious element.. On way to solve these problems is to reuse and recycle this warm water, through the use of natural cooling medium, such as air in a heat exchanger unit, known as a cooling tower. A poor performance, design or reliability of cooling towers will result in lower flow rate of cooling water an increase in the evaporation of water, an hence losses of water and energy. This paper which presents an experimental investigate of thermal and hydraulic performances of a mechanical cooling tower, enables to show that the water evaporation rate, Mev, increases with an increase in the air and water flow rates, as well as inlet water temperature and for fixed air flow rates, the pressure drop (ΔPw/Z) increases with increasing , L, due to the hydrodynamic behavior of the air/water flow.

Keywords: water, recycle, performance, cooling tower

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
109 Effect of Passive Modified Atmosphere in Different Packaging Materials on Fresh-Cut Mixed Fruit Salad Quality during Storage

Authors: I. Krasnova, L. Dukalska, D. Seglina, K. Juhnevica, E. Sne, D. Karklina

Abstract:

Experiments were carried out at the Latvia State Institute of Fruit-Growing in 2011. Fresh-cut minimally processed apple and pear mixed salad were packed by passive modified atmosphere (MAP) in PP containers, which were hermetically sealed by breathable conventional BOPP PropafreshTM P2GAF, and Amcor Agrifresh films. Biodegradable NatureFlexTM NVS INNOVIA Films and VC999 BioPack PLA films coated with a barrier of pure silicon oxide (SiOx) were used to compare the fresh-cut produce quality with this packed in conventional packaging films. Samples were cold stored at temperature +4.0±0.5 °C up to 10 days. The quality of salad was evaluated by physicochemical properties – weight losses, moisture, firmness, the effect of packaging modes on the colour, dynamics in headspace atmosphere concentration (CO2 and O2), titratable acidity values, as well as by microbiological contamination (yeasts, moulds and total bacteria count) of salads, analyzing before packaging and after 2, 4, 6, 8, and 10 storage days.

Keywords: Biodegradable packaging, conventional, fresh-cut fruit salad

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3907
108 Quality Evaluation of Ready to Eat Potatoes’ Produce in Flexible Packaging

Authors: Sandra Muizniece-Brasava, Aija Ruzaike, Lija Dukalska, Ilze Stokmane, Liene Strauta

Abstract:

Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of thermal treatment in flexible retort pouch packaging on the quality of potatoes’ produce during the storage time. Samples were evaluated immediately after retort thermal treatment; and following 1; 2; 3 and 4 storage months at the ambient temperature of +18±2ºC in vacuum packaging from polyamide/polyethylene (PA/PE) and aluminum/polyethylene (Al/PE) film pouches with barrier properties. Experimentally the quality of the potatoes’ produce in dry butter and mushroom dressings was characterized by measuring pH, hardness, color, microbiological properties and sensory evaluation. The sterilization was effective in protecting the produce from physical, chemical, and microbial quality degradation. According to the study of obtained data, it can be argued that the selected product processing technology and packaging materials could be applied to provide the safety and security during four-month storage period.

Keywords: Potatoes’ produce, shelf life, retort thermal treatment and packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3069
107 Barriers and Drivers towards the Use of Childhood Vaccination Services by Undocumented Migrant Caregivers in Sabah, Malaysia: A Qualitative Analysis

Authors: Michal Christina Steven, Mohd. Yusof Hj Ibrahim, Haryati Abdul Karim, Prabakaran Dhanaraj, Kelly Alexius Mansin

Abstract:

After 27 years, Malaysia reported polio cases in 2019 involving the children of the undocumented migrants living in Sabah. These undocumented migrants present a significant challenge in achieving the elimination of vaccine-preventable diseases (VPD). Due to the recent polio outbreak among the undocumented migrant children in Sabah, an in-depth interview was conducted among the caregivers of undocumented migrant children to identify the barriers and drivers towards vaccinating their children. Financial barriers, legal citizenship status, language barrier, the COVID-19 pandemic, and physical barriers have been the barriers to access vaccination services by undocumented migrants. Five significant drivers for undocumented migrants to vaccinate their children are social influence, fear of disease, parental trust in healthcare providers, good support, and vaccine availability. Necessary action should be taken immediately to address the problems of vaccinating the children of undocumented migrants to prevent the re-emergence of VPD.

Keywords: Malaysia, polio, Sabah, undocumented migrants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
106 Thermal and Mechanical Properties of Modified CaCO3 /PP Nanocomposites

Authors: A. Buasri, N. Chaiyut, K. Borvornchettanuwat, N. Chantanachai, K. Thonglor

Abstract:

Inorganic nanoparticles filled polymer composites have extended their multiple functionalities to various applications, including mechanical reinforcement, gas barrier, dimensional stability, heat distortion temperature, flame-retardant, and thermal conductivity. Sodium stearate-modified calcium carbonate (CaCO3) nanoparticles were prepared using surface modification method. The results showed that sodium stearate attached to the surface of CaCO3 nanoparticles with the chemical bond. The effect of modified CaCO3 nanoparticles on thermal properties of polypropylene (PP) was studied by means of differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). It was found that CaCO3 significantly affected the crystallization temperature and crystallization degree of PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the hardness increased by about 5%.

Keywords: Polypropylene Nanocomposites, Modified Calcium Carbonate, Sodium Stearate, Surface Treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4329
105 Modeling the Effect of Scale Deposition on Heat Transfer in Desalination Multi-Effect Distillation Evaporators

Authors: K. Bourouni, M. Chacha, T. Jaber, A. Tchantchane

Abstract:

In Multi-Effect Distillation (MED) desalination evaporators, the scale deposit outside the tubes presents a barrier to heat transfers reducing the global heat transfer coefficient and causing a decrease in water production; hence a loss of efficiency and an increase in operating and maintenance costs. Scale removal (by acid cleaning) is the main maintenance operation and constitutes the major reason for periodic plant shutdowns. A better understanding of scale deposition mechanisms will lead to an accurate determination of the variation of scale thickness around the tubes and an improved accuracy of the overall heat transfer coefficient calculation. In this paper, a coupled heat transfer-calcium carbonate scale deposition model on a horizontal tube bundle is presented. The developed tool is used to determine precisely the heat transfer area leading to a significant cost reduction for a given water production capacity. Simulations are carried to investigate the influence of different parameters such as water salinity, temperature, etc. on the heat transfer.

Keywords: Multi-effect-evaporator, water desalination, scale deposition, heat transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 545
104 Evaluation of Packaging Conditions Influence on the Content of Amino Acids of Marinated Venison

Authors: Ilze Gramatina, Laima Silina, Tatjana Rakcejeva

Abstract:

Venison is well known as a traditional meat type in Europe and it is lower in calories, cholesterol and fat content than common cuts of beef, pork or lamb. The aim of the current research was to determine content of amino acids (LVS ISO 13903:2005) in different types of marinades marinated venison during storage. Beef as a control was analyzed for comparison of obtained results. The meat (2x3x2cm) pieces were marinated in two different types of marinades: red wine and tomato sauce marinade. The prepared meat samples were stored (marinated) at 4±2ºC temperature for 48±1h. Marinated meat was placed in polypropylene trays, hermetically sealed with high barrier polymer film under modified atmosphere (C02 40%+N2 60%) without and with iron based oxygen scavenger sachets (Mitsubishi Gas Chemical Europe Ageless®), all samples were compared with packed marinated products in air ambiance. Results of current research show that changes of amino acids content in marinated venison mainly depend on packaging conditions.

Keywords: Marinated venison, modified atmospheres, oxygen absorber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
103 The Impact of Women on Urban Sustainability (Case Study: Three Districts of Tehran)

Authors: Reza Mokhtari Malekabadi, Leila Jalalabadi, Zahra Kiyani Ghaleh No

Abstract:

Today, systems of management and urban planning, attempt to reach more sustainable development through monitoring developments, urban development and development plans. Monitoring of changes in the urban places and sustainable urban development accounted a base for the realization of worthy goals urban sustainable development. The importance of women in environmental protection programs is high enough that in 21 agenda has been requested from all countries to allocate more shares to women in their policies. On the other hand, urban waste landfill has become one of the environmental concerns in modern cities. This research assumes that the impact of women on recycling, reduction and proper waste landfill is much more than men. For this reason, three districts; Yousef Abad, Heshmatieh & Nezam Abad are gauged through questionnaire and using the analytical research hypothesis model. This research will be categorized as functional research. The results have shown that noticing the power of women, their participation towards realization of the development objectives and programs can be used in solving their problems.

Keywords: Citizens (Urban), Environmental, Sustainability, Solid waste, Tehran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
102 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Heham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposals in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: Durability, glass waste, freeze-thaw cycles, nondestructive test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
101 Promising Immobilization of Cadmium and Lead inside Ca-rich Glass-ceramics

Authors: A. Karnis, L. Gautron

Abstract:

Considering toxicity of heavy metals and their accumulation in domestic wastes, immobilization of lead and cadmium is envisaged inside glass-ceramics. We particularly focused this work on calcium-rich phases embedded in a glassy matrix. Glass-ceramics were synthesized from glasses doped with 12 wt% and 16 wt% of PbO or CdO. They were observed and analyzed by Electron MicroProbe Analysis (EMPA) and Analytical Scanning Electron Microscopy (ASEM). Structural characterization of the samples was performed by powder XRay Diffraction. Diopside crystals of CaMgSi2O6 composition are shown to incorporate significant amounts of cadmium (up to 9 wt% of CdO). Two new crystalline phases are observed with very high Cd or Pb contents: about 40 wt% CdO for the cadmiumrich phase and near 60 wt% PbO for the lead-rich phase. We present complete chemical and structural characterization of these phases. They represent a promising way for the immobilization of toxic elements like Cd or Pb since glass ceramics are known to propose a “double barrier" protection (metal-rich crystals embedded in a glass matrix) against metal release in the environment.

Keywords: Cadmium, Calcium-rich phases, Diopside, Domesticwastes, Fly ashes, Glass-ceramics, Lead, Municipal Solid WasteIncineration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
100 Unraveling Biostimulation of Decolorized Mediators for Microbial Fuel Cell-Aided Textile Dye Decontamination

Authors: Pei-Lin Yueh, Bor-Yann Chen, Chuan-Chung Hsueh

Abstract:

This first-attempt study revealed that decolorized intermediates of azo dyes could act as redox mediators to assist wastewater (WW) decolorization due to enhancement of electron-transport phenomena. Electrochemical impedance spectra indicated that hydroxyl and amino-substituent(s) were functional group(s) as redox-mediator(s). As azo dyes are usually multiple benzene-rings structured, their derived decolorized intermediates are likely to play roles of electron shuttles due to lower barrier of energy gap for electron shuttling. According to cyclic voltammetric profiles, redox mediating characteristics of decolorized intermediates of azo dyes (e.g., RBu171, RR198, RR141, RBk5) were clearly disclosed. With supplementation of biodecolorized metabolites of RR141 and 198, decolorization performance of could be evidently augmented. This study also suggested the optimal modes of microbial fuel cell (MFC)-assisted WW decolorization would be plug-flow or batch mode of operation with no mix. Single chamber-MFCs would be more favourable than double chamber MFCs due to non-mixing contacting reactor scheme for operation.

Keywords: Redox mediators, dye decolorization, bioelectricity generation, microbial fuel cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
99 Education in Technology for Sustainable Development Applied to School Gardens

Authors: Sara Blanc, José V. Benlloch-Dualde, Laura Grindei, Ana C. Torres, Angélica Monteiro

Abstract:

This paper presents a study that leads an experience by introducing digital learning applied to a case study focused on primary and secondary school garden-based education. The approach represents an example for interaction among different education and research agents at different countries and levels, such as universities, public and private researches and schools, to get involved in the implementation of education for sustainable development that will make students become more sensible to natural environment, more responsible for their consumption, more aware about waste reduction and recycling, more conscious of the sustainable use of natural resources and, at the same time, more ‘digitally competent’. The experience was designed attending to the European digital education context and OECD (Organization for Economic Co-operation and Development) directives in transversal skills education. The paper presents the methodology carried out in the study as well as outcomes obtained from the experience.

Keywords: School gardens, primary education, secondary education, science technology and innovation in education, digital learning, sustainable development goals, university, knowledge transference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109
98 Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque

Authors: K. Jabeur, L. D. Buda-Prejbeanu, G. Prenat, G. Di Pendina

Abstract:

MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.

Keywords: Spin orbit Torque, Magnetic Tunnel Junction, MRAM, Spintronic, Circuit simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3505
97 Lack of BIM Training: Investigating Practical Solutions for the State of Kuwait

Authors: Noor M. Abdulfattah, Ahmed M. Khalafallah, Nabil A. Kartam

Abstract:

Despite the evident benefits of building information modeling (BIM) to the construction industry, it faces significant implementation challenges in the State of Kuwait. This study investigates the awareness of construction stakeholders of BIM implementation challenges, and identifies various solutions to overcome these challenges. Specifically, the main objectives of this study are to: (1) characterize the barriers that deter utilization of BIM, (2) examine the awareness of engineers, architects, and construction stakeholders of these barriers, and (3) identify practical solutions to facilitate BIM utilization. A questionnaire survey was designed to collect data on the aforementioned objectives from local companies and senior BIM experts. It was found that engineers are highly aware of BIM implementation barriers. In addition, it was concluded from the questionnaire that the biggest barrier is the lack of BIM training. Based on expert feedback, the study concluded with a number of recommendations on how to overcome the barriers of BIM utilization. This should prove useful to the construction industry stakeholders and can lead to significant changes to design and construction practices.

Keywords: Building information modeling, construction, challenges, information technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
96 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: Linear low density polyethylene, nanocomposite, organoclay, plasticizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
95 Studies on Lucrative Process Layout for Medium Scale Industries

Authors: Balamurugan Baladhandapani, Ganesh Renganathan, V. R. Sanal Kumar

Abstract:

In this paper a comprehensive review on various factory layouts has been carried out for designing a lucrative process layout for medium scale industries. Industry data base reveals that the end product rejection rate is on the order of 10% amounting large profit loss. In order to avoid these rejection rates and to increase the quality product production an intermediate non-destructive testing facility (INDTF) has been recommended for increasing the overall profit. We observed through detailed case studies that while introducing INDTF to medium scale industries the expensive production process can be avoided to the defective products well before its final shape. Additionally, the defective products identified during the intermediate stage can be effectively utilized for other applications or recycling; thereby the overall wastage of the raw materials can be reduced and profit can be increased. We concluded that the prudent design of a factory layout through critical path method facilitating with INDTF will warrant profitable outcome.

Keywords: Intermediate Non-destructive testing, Medium scale industries, Process layout design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
94 Synthesis of Peptide Amides using Sol-Gel Immobilized Alcalase in Batch and Continuous Reaction System

Authors: L. N. Corîci, A. E. Frissen, D -J. Van Zoelen, I. F. Eggen, F. Peter, C. M. Davidescu, C. G. Boeriu

Abstract:

Two commercial proteases from Bacillus licheniformis (Alcalase 2.4 L FG and Alcalase 2.5 L, Type DX) were screened for the production of Z-Ala-Phe-NH2 in batch reaction. Alcalase 2.4 L FG was the most efficient enzyme for the C-terminal amidation of Z-Ala-Phe-OMe using ammonium carbamate as ammonium source. Immobilization of protease has been achieved by the sol-gel method, using dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) as precursors (unpublished results). In batch production, about 95% of Z-Ala-Phe-NH2 was obtained at 30°C after 24 hours of incubation. Reproducibility of different batches of commercial Alcalase 2.4 L FG preparations was also investigated by evaluating the amidation activity and the entrapment yields in the case of immobilization. A packed-bed reactor (0.68 cm ID, 15.0 cm long) was operated successfully for the continuous synthesis of peptide amides. The immobilized enzyme retained the initial activity over 10 cycles of repeated use in continuous reactor at ambient temperature. At 0.75 mL/min flow rate of the substrate mixture, the total conversion of Z-Ala-Phe-OMe was achieved after 5 hours of substrate recycling. The product contained about 90% peptide amide and 10% hydrolysis byproduct.

Keywords: packed-bed reactor, peptide amide, protease, sol-gel immobilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
93 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff

Abstract:

Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.

Keywords: Coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
92 Validation of Contemporary Physical Activity Tracking Technologies through Exercise in a Controlled Environment

Authors: Reem I. Altamimi, Geoff D. Skinner

Abstract:

Extended periods engaged in sedentary behavior increases the risk of becoming overweight and/or obese which is linked to other health problems. Adding technology to the term ‘active living’ permits its inclusion in promoting and facilitating habitual physical activity. Technology can either act as a barrier to, or facilitate this lifestyle, depending on the chosen technology. Physical Activity Monitoring Technologies (PAMTs) are a popular example of such technologies. Different contemporary PAMTs have been evaluated based on customer reviews; however, there is a lack of published experimental research into the efficacy of PAMTs. This research aims to investigate the reliability of four PAMTs: two wristbands (Fitbit Flex and Jawbone UP), a waist-clip (Fitbit One), and a mobile application (iPhone Health Application) for recording a specific distance walked on a treadmill (1.5km) at constant speed. Physical activity tracking technologies are varied in their recordings, even while performing the same activity. This research demonstrates that Jawbone UP band recorded the most accurate distance compared to Fitbit One, Fitbit Flex, and iPhone Health Application.

Keywords: Fitbit, Jawbone UP, mobile tracking applications, physical activity tracking technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
91 A Review on Design and Fabrication of Fuel Fired Crucible Furnace

Authors: Oluwaseyi O. Taiwo, Adeolu A. Adediran, Abayomi A. Akinwande, Frank C. Okoyeh

Abstract:

The use of fuel fired crucible furnace is essential in the foundries of developing countries owing to the luxury of electricity. Fuel fired crucible furnace are commonly used in recycling, casting, research and training activities in tertiary institutions, therefore, several attempts are being made to improve the performance and service life of fuel fired crucible. The current study reviews the sequential stages involved in the designs and fabrication of fuel fired crucible furnace which include; design, material selection, modelling and simulation as well as performance evaluation. The study shows that selecting appropriate materials for the different units in the fabrication process is important to the efficiency and service life of fuel fired crucible furnaces. Also, efficiency and performance of fuel fired furnaces are independent of cost of fabrication and their capacity. The importance of modelling and simulation tools in the fabrication process are identified while their non-frequent usage in several works is observed. The need to widen performance evaluations in further studies beyond efficiency determination to give a more detailed assessment of fuel fired crucible furnaces is also observed.

Keywords: Crucible furnace, furnace design, fabrication, fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
90 Sustainable and Ecological Designs of the Built Environment

Authors: Charles Mbohwa, Alexander Mudiwakure

Abstract:

This paper reviews designs of the built environment from a sustainability perspective, emphasizing their importance in achieving ecological and sustainable economic objectives. The built environment has traditionally resulted in loss of biodiversity, extinction of some species, climate change, excessive water use, land degradation, space depletion, waste accumulation, energy consumption and environmental pollution. Materials used like plastics, metals, bricks, concrete, cement, natural aggregates, glass and plaster have wreaked havoc on the earth´s resources, since they have high levels of embodied energy hence not sustainable. Additional resources are consumed during use and disposal phases. Proposed designs for sustainability solutions include: ecological sanitation and eco-efficiency systems that ensure social, economic, environmental and technical sustainability. Renewable materials and energy systems, passive cooling and heating systems and material and energy reduction, reuse and recycling can improve the sector. These ideas are intended to inform the field of ecological design of the built environment.

Keywords: Ecological and sustainability designs, environmental degradation, ecological sanitation, energy use efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
89 Solid Waste Management through Mushroom Cultivation – An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of  other sectors in order to reduce environmental pollution. Today there  are more and more solid wastes are generated, but only very small  amount of those are recycled. So, the threatening of environmental  pressure to public health is very serious. The methods considered for  the treatment of solid waste are biogas tanks or processing to make  animal feed and fertilizer, however, they did not perform well. An  alternative approach is growing mushrooms on waste residues. This  is regarded as an environmental friendly solution with potential  economical benefit. The substrate producers do their best to produce  quality substrate at low cost. Apart from other methods, this can be  achieved by employing biologically degradable wastes used as the  resource material component of the substrate. Mushroom growing is  a significant tool for the restoration, replenishment and remediation  of Earth’s overburdened ecosphere. One of the rational methods of  waste utilization involves locally available wastes. The present study  aims to find out the yield of mushroom grown on locally available  waste for free and to conserve our environment by recycling wastes.

 

Keywords: Biodegradable, environment, mushroom, remediation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5256
88 Barrier Properties of Starch - Ethylene Vinyl Alcohol Nanocomposites

Authors: Farid Amidi-Fazli, Neda Amidi-Fazli

Abstract:

Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1-15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.

Keywords: Starch, EVOH, nanocrystalline cellulose, Hydrophilicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957