Search results for: renewable energy power generation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5848

Search results for: renewable energy power generation.

3658 Eco-Roof Systems in Subtropical Climates for Sustainable Development and Mitigation of Climate Change

Authors: M. O’Driscoll, M. Anwar, M. G. Rasul

Abstract:

The benefits of eco-roofs is quite well known, however there remains very little research conducted for the implementation of eco-roofs in subtropical climates such as Australia. There are many challenges facing Australia as it moves into the future, climate change is proving to be one of the leading challenges. In order to move forward with the mitigation of climate change, the impacts of rapid urbanization need to be offset. Eco-roofs are one way to achieve this; this study presents the energy savings and environmental benefits of the implementation of eco-roofs in subtropical climates. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two shipping containers were converted into small offices, one with an eco-roof and one without. These were used for temperature, humidity and energy consumption data collection. In addition, a computational model was developed using Design Builder software (state-of-the-art building energy simulation software) for simulating energy consumption of shipping containers and environmental parameters, this was done to allow comparison between simulated and real world data. This study found that eco-roofs are very effective in subtropical climates and provide energy saving of about 13% which agrees well with simulated results. 

Keywords: Climate Change, Eco/Green roof, Energy savings, Subtropical climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
3657 Measurement of Systemic Power Efficiency of Microwave Heating Application

Authors: Yi He, Nutdechatorn Puangngernmak, Suramate Chalermwisutkul

Abstract:

Microwave heating process has been developed about sixty years while measurement system has also progressed. Because of irradiation of high frequency of microwave, researchers have been utilized many costly technical instrument measuring parameters to evaluate the performance of microwave heating system. Therefore, this paper is intended to present an easier and feasible efficiency measurement method. It can help inspecting efficiency of microwave heating system with good accuracy, while the method can also give reference to optimizing procedure for microwave heating system for various load material

Keywords: measurement, microwave heating system, systemic power efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
3656 Analytical Mathematical Expression for the Channel Capacity of a Power and Rate Simultaneous Adaptive Cellular DS/FFH-CDMA Systemin a Rayleigh Fading Channel

Authors: P.Varzakas

Abstract:

In this paper, an accurate theoretical analysis for the achievable average channel capacity (in the Shannon sense) per user of a hybrid cellular direct-sequence/fast frequency hopping code-division multiple-access (DS/FFH-CDMA) system operating in a Rayleigh fading environment is presented. The analysis covers the downlink operation and leads to the derivation of an exact mathematical expression between the normalized average channel capacity available to each system-s user, under simultaneous optimal power and rate adaptation and the system-s parameters, as the number of hops per bit, the processing gain applied, the number of users per cell and the received signal-tonoise power ratio over the signal bandwidth. Finally, numerical results are presented to illustrate the proposed mathematical analysis.

Keywords: Shannon capacity, adaptive systems, code-division multiple access, fading channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
3655 Analysis of Normal Penetration of Ogive -Nose Projectiles into Thin Metallic Plates

Authors: M. H. Pol, A. Bidi, A.V. Hoseini, G.H. Liaghat

Abstract:

In this note, a theoretical model for analyzing of normal penetration of the ogive – nose projectile into metallic targets is presented .The failure is assumed to be asymmetry petalling and the analysis is performed by using the energy balance and work done .The work done consist of the work required for plastic deformation Wp, the work for transferring the matter to new position Wd and the work for bending of the petals Wb. In several studies, it has been shown that we can neglect the loss of energy by temperature. In this present study, in first, by assuming the crater formation after perforation, the value of work done is calculated during the normal penetration of conical projectiles into thin metallic targets. Then the value of residual velocity and ballistic limit of the projectile is predicated by using the energy balance. In final, theoretical and experimental results is compared.

Keywords: Ogive Projectile, normal impact, penetration, thinmetallic target.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
3654 Improving Cryptographically Generated Address Algorithm in IPv6 Secure Neighbor Discovery Protocol through Trust Management

Authors: M. Moslehpour, S. Khorsandi

Abstract:

As transition to widespread use of IPv6 addresses has gained momentum, it has been shown to be vulnerable to certain security attacks such as those targeting Neighbor Discovery Protocol (NDP) which provides the address resolution functionality in IPv6. To protect this protocol, Secure Neighbor Discovery (SEND) is introduced. This protocol uses Cryptographically Generated Address (CGA) and asymmetric cryptography as a defense against threats on integrity and identity of NDP. Although SEND protects NDP against attacks, it is computationally intensive due to Hash2 condition in CGA. To improve the CGA computation speed, we parallelized CGA generation process and used the available resources in a trusted network. Furthermore, we focused on the influence of the existence of malicious nodes on the overall load of un-malicious ones in the network. According to the evaluation results, malicious nodes have adverse impacts on the average CGA generation time and on the average number of tries. We utilized a Trust Management that is capable of detecting and isolating the malicious node to remove possible incentives for malicious behavior. We have demonstrated the effectiveness of the Trust Management System in detecting the malicious nodes and hence improving the overall system performance.

Keywords: NDP, SEND, CGA, modifier, malicious node.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
3653 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector

Authors: Salma Parvin, M. A. Alim

Abstract:

The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.

Keywords: DASC, forced convection, mass flow rate, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
3652 Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production

Authors: Andra Blumberga, Armands Gravelsins, Haralds Vigants, Dagnija Blumberga

Abstract:

The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles.

Keywords: Bioenergy, biotechonomy, system dynamics modelling, wood pellets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
3651 Decoy-pulse Protocol for Frequency-coded Quantum Key Distribution

Authors: Sudeshna Bhattacharya, Pratyush Pandey, Pradeep Kumar K

Abstract:

We propose a decoy-pulse protocol for frequency-coded implementation of B92 quantum key distribution protocol. A direct extension of decoy-pulse method to frequency-coding scheme results in security loss as an eavesdropper can distinguish between signal and decoy pulses by measuring the carrier photon number without affecting other statistics. We overcome this problem by optimizing the ratio of carrier photon number of decoy-to-signal pulse to be as close to unity as possible. In our method the switching between signal and decoy pulses is achieved by changing the amplitude of RF signal as opposed to modulating the intensity of optical signal thus reducing system cost. We find an improvement by a factor of 100 approximately in the key generation rate using decoy-state protocol. We also study the effect of source fluctuation on key rate. Our simulation results show a key generation rate of 1.5×10-4/pulse for link lengths up to 70km. Finally, we discuss the optimum value of average photon number of signal pulse for a given key rate while also optimizing the carrier ratio.

Keywords: B92, decoy-pulse, frequency-coding, quantum key distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
3650 Optimal Transmission Network Usage and Loss Allocation Using Matrices Methodology and Cooperative Game Theory

Authors: Baseem Khan, Ganga Agnihotri

Abstract:

Restructuring of Electricity supply industry introduced many issues such as transmission pricing, transmission loss allocation and congestion management. Many methodologies and algorithms were proposed for addressing these issues. In this paper a power flow tracing based method is proposed which involves Matrices methodology for the transmission usage and loss allocation for generators and demands. This method provides loss allocation in a direct way because all the computation is previously done for usage allocation. The proposed method is simple and easy to implement in a large power system. Further it is less computational because it requires matrix inversion only a single time. After usage and loss allocation cooperative game theory is applied to results for finding efficient economic signals. Nucleolus and Shapely value approach is used for optimal allocation of results. Results are shown for the IEEE 6 bus system and IEEE 14 bus system.

Keywords: Modified Kirchhoff Matrix, Power flow tracing, Transmission Pricing, Transmission Loss Allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
3649 Applying Energy Consumption Schedule and Comparing It with Load Shifting Technique in Residential Load

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasy

Abstract:

Energy consumption schedule (ECS) technique shifts usage of loads from on peak hours and redistributes them throughout the day according to residents’ operating time preferences. This technique is used as form of indirect control from utility to improve the load curve and hence its load factor and reduce customer’s total electric bill as well. Similarly, load shifting technique achieves ECS purposes but as direct control form applied from utility. In this paper, ECS is simulated twice as optimal constrained mathematical formula, solved by using CVX program in MATLAB® R2013b. First, it is utilized for single residential building with ten apartments to determine max allowable energy consumption per hour for each residential apartment. Then, it is used for single apartment with number of shiftable domestic devices, where operating schedule is deduced using previous simulation output results as constraints. The paper ends by giving differences between ECS technique and load shifting technique via literature and simulation. Based on results assessment, it will be shown whether using ECS or load shifting is more beneficial to both customer and utility.

Keywords: Energy consumption schedule, load shifting technique, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1114
3648 Sediment Fixation of Arsenic in the Ash Lagoon of a Coal-Fired Power Plant, Philippines

Authors: Joselito P. Duyanen, Aries Milay

Abstract:

Arsenic in the sediments of the ash lagoons of the coal-fired power plant in Pagbilao, Quezon Province in the Philippines was sequentially extracted to determine its potential for leaching to the groundwater and the adjacent marine environment. Results show that 89% of the As is bound to the quasi-crystalline Fe/Mn oxides and hydroxide matrix in the sediments, whereas, the adsorbed and exchangeable As hosted by the clay minerals, representing those that are easiest to release from the sediment matrix, is below 10% of the acid leachable As. These As in these sediment matrices represent the possible maximum amount of As that can be released and supplied to the groundwater and the adjacent marine environment. Of the 89% reducible As, up to 4% is associated with the easily reducible variety, whereas, the rest is more strongly bonded by the moderately reducible variety. Based on the long-term As content of the lagoon water, the average desorption rate of As is calculated to be very low -- 0.3-0.5% on the average and 0.6% on the maximum. This indicates that As is well-fixed by its sediment matrices in the ash lagoon, attenuating the influx of As into the adjacent groundwater and marine environments.

Keywords: Arsenic, natural attenuation, coal-fired power plant, Philippines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
3647 Study of Thermal Effects while Filling an Empty Tank

Authors: Y. Kerboua Ziari, M. Benouahlima, A. Benzaoui

Abstract:

We are interested in this paper to the thermal effects occurring during the filling of hydrogen tanks. The consequence of this heating on the storage performance of these speakers was appreciated. The motivation comes from the fact that the development of hydrogen as an energy carrier of the future will require strong evolution in the field of storage modes to smaller, less expensive lighter, with a strong security interest and considerable autonomy.

Keywords: Hydrogen, Fuel, Storage, Energy, Modeling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
3646 Impact Assessment of Air Pollution Stress on Plant Species through Biochemical Estimations

Authors: Govindaraju.M, Ganeshkumar.R.S, Suganthi.P, Muthukumaran.V.R, Visvanathan.P

Abstract:

The present study was conducted to investigate the response of plants exposed to lignite-based thermal power plant emission. For this purpose, five plant species were collected from 1.0 km distance (polluted site) and control plants were collected from 20.0 km distance (control site) to thermal power plant. The common tree species Cassia siamea Lamk., Polyalthia longifolia. Sonn, Acacia longifolia (Andrews) Wild., Azadirachta indica A.Juss, Ficus religiosa L. were selected as test plants. Photosynthetic pigments changes (chlorophyll a, chlorophyll b and carotenoids) and rubisco enzyme modifications were studied. Reduction was observed in the photosynthetic pigments of plants growing in polluted site and also large sub unit of the rubisco enzyme was degraded in Azadirachta indica A. Juss collected from polluted site.

Keywords: Air pollution, Lignite-based thermal power plant, Photosynthetic pigments, Rubisco enzyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3185
3645 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model

Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey

Abstract:

This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.

Keywords: Air dispersion model, integration power system, SCADA systems, GIS system, environmental management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
3644 Design and Analysis of an 8T Read Decoupled Dual Port SRAM Cell for Low Power High Speed Applications

Authors: Ankit Mitra

Abstract:

Speed, power consumption and area, are some of the most important factors of concern in modern day memory design. As we move towards Deep Sub-Micron Technologies, the problems of leakage current, noise and cell stability due to physical parameter variation becomes more pronounced. In this paper we have designed an 8T Read Decoupled Dual Port SRAM Cell with Dual Threshold Voltage and characterized it in terms of read and write delay, read and write noise margins, Data Retention Voltage and Leakage Current. Read Decoupling improves the Read Noise Margin and static power dissipation is reduced by using Dual-Vt transistors. The results obtained are compared with existing 6T, 8T, 9T SRAM Cells, which shows the superiority of the proposed design. The Cell is designed and simulated in TSPICE using 90nm CMOS process.

Keywords: CMOS, Dual-Port, Data Retention Voltage, 8T SRAM, Leakage Current, Noise Margin, Loop-cutting, Single-ended.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469
3643 A Performance Comparison of Golay and Reed-Muller Coded OFDM Signal for Peak-to-Average Power Ratio Reduction

Authors: Sanjay Singh, M Sathish Kumar, H. S Mruthyunjaya

Abstract:

Multicarrier transmission system such as Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for high bit rate transmission in wireless communication systems. OFDM is a spectrally efficient modulation technique that can achieve high speed data transmission over multipath fading channels without the need for powerful equalization techniques. A major drawback of OFDM is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal which can significantly impact the performance of the power amplifier. In this paper we have compared the PAPR reduction performance of Golay and Reed-Muller coded OFDM signal. From our simulation it has been found that the PAPR reduction performance of Golay coded OFDM is better than the Reed-Muller coded OFDM signal. Moreover, for the optimum PAPR reduction performance, code configuration for Golay and Reed-Muller codes has been identified.

Keywords: OFDM, PAPR, Perfect Codes, Golay Codes, Reed-Muller Codes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
3642 Worth of Sick Building Syndrome and Enhance the Quality of Life in Green Building

Authors: Kamyar Kabirifar, Majid Azarniush, Behbood Maashkar

Abstract:

A proper house is a suitable residential area which provides comfort, proper accessibility, security, stability and permanence of structure, enough lighting, proper initial infrastructures and ventilation for its inhabitants and the most important of all, it should be proportional to the family’s financial power .

Saving energy and making optimal usage of it and also taking advantage of stable energies are the bases of green buildings. Making green building will help the health of a person living in it and in its surrounding. It will support the people and provoke their satisfaction. Not only it will bring about the raise of level of the quality of life for building inhabitants, but it will cause the promotion of quality level of life of the people living in the surrounding area and in general the society. 

 

Keywords: Quality of Life, Green Building, environment pollution, Sick Building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
3641 An EOQ Model for Non-Instantaneous Deteriorating Items with Power Demand, Time Dependent Holding Cost, Partial Backlogging and Permissible Delay in Payments

Authors: M. Palanivel, R. Uthayakumar

Abstract:

In this paper, Economic Order Quantity (EOQ) based model for non-instantaneous Weibull distribution deteriorating items with power demand pattern is presented. In this model, the holding cost per unit of the item per unit time is assumed to be an increasing linear function of time spent in storage. Here the retailer is allowed a trade-credit offer by the supplier to buy more items. Also in this model, shortages are allowed and partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. This model aids in minimizing the total inventory cost by finding the optimal time interval and finding the optimal order quantity. The optimal solution of the model is illustrated with the help of numerical examples. Finally sensitivity analysis and graphical representations are given to demonstrate the model.

Keywords: Power demand pattern, Partial backlogging, Time dependent holding cost, Trade credit, Weibull deterioration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3083
3640 The Effect of Laser Surface Melting on the Microstructure and Mechanical Properties of Low Carbon Steel

Authors: Suleiman M. Elhamali, K. M. Etmimi, A. Usha

Abstract:

The paper presents the results of microhardness and microstructure of low carbon steel surface melted using carbon dioxide laser with a wavelength of 10.6μm and a maximum output power of 2000W. The processing parameters such as the laser power, and the scanning rate were investigated in this study. After surface melting two distinct regions formed corresponding to the melted zone MZ, and the heat affected zone HAZ. The laser melted region displayed a cellular fine structures while the HAZ displayed martensite or bainite structure. At different processing parameters, the original microstructure of this steel (Ferrite+Pearlite) has been transformed to new phases of martensitic and bainitic structures. The fine structure and the high microhardness are evidence of the high cooling rates which follow the laser melting. The melting pool and the transformed microstructure in the laser surface melted region of carbon steel showed clear dependence on laser power and scanning rate.

Keywords: Carbon steel, laser surface melting, microstructure, microhardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
3639 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: Predictive maintenance, machine learning, big data, cloud, on premise SQL, R.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
3638 Effect of Physical Contact (Hand-Holding) on Heart Rate Variability

Authors: T. Pishbin, S.M.P. Firoozabadi, N. Jafarnia Dabanloo, F. Mohammadi, S. Koozehgari

Abstract:

Heart-s electric field can be measured anywhere on the surface of the body (ECG). When individuals touch, one person-s ECG signal can be registered in other person-s EEG and elsewhere on his body. Now, the aim of this study was to test the hypothesis that physical contact (hand-holding) of two persons changes their heart rate variability. Subjects were sixteen healthy female (age: 20- 26) which divided into eight sets. In each sets, we had two friends that they passed intimacy test of J.sternberg. ECG of two subjects (each set) acquired for 5 minutes before hand-holding (as control group) and 5 minutes during they held their hands (as experimental group). Then heart rate variability signals were extracted from subjects' ECG and analyzed in linear feature space (time and frequency domain) and nonlinear feature space. Considering the results, we conclude that physical contact (hand-holding of two friends) increases parasympathetic activity, as indicate by increase SD1, SD1/SD2, HF and MF power (p<0.05) and decreases sympathetic activity, as indicate by decrease LF power (p<0.01) and LF/HF ratio (p<0.05).

Keywords: Autonomic nervous system (ANS), Hand- holding, Heart rate variability (HRV), Power spectral density analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3103
3637 Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria

Authors: M. Ouagued, A. Khellaf

Abstract:

The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.

Keywords: Direct solar irradiance, solar radiation in Algeria, solar parabolic trough collector, heat balance, thermal oil performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3653
3636 Radiative Reactions Analysis at the Range of Astrophysical Energies

Authors: A. Amar

Abstract:

Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.

Keywords: Elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
3635 Cognitive Relaying in Interference Limited Spectrum Sharing Environment: Outage Probability and Outage Capacity

Authors: Md Fazlul Kader, Soo Young Shin

Abstract:

In this paper, we consider a cognitive relay network (CRN) in which the primary receiver (PR) is protected by peak transmit power ¯PST and/or peak interference power Q constraints. In addition, the interference effect from the primary transmitter (PT) is considered to show its impact on the performance of the CRN. We investigate the outage probability (OP) and outage capacity (OC) of the CRN by deriving closed-form expressions over Rayleigh fading channel. Results show that both the OP and OC improve by increasing the cooperative relay nodes as well as when the PT is far away from the SR.

Keywords: Cognitive relay, outage, interference limited, decode-and-forward (DF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
3634 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink

Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard

Abstract:

Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.

Keywords: Photovoltaic cell, natural convection, heat sink, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
3633 Library Aware Power Conscious Realization of Complementary Boolean Functions

Authors: Padmanabhan Balasubramanian, C. Ardil

Abstract:

In this paper, we consider the problem of logic simplification for a special class of logic functions, namely complementary Boolean functions (CBF), targeting low power implementation using static CMOS logic style. The functions are uniquely characterized by the presence of terms, where for a canonical binary 2-tuple, D(mj) ∪ D(mk) = { } and therefore, we have | D(mj) ∪ D(mk) | = 0 [19]. Similarly, D(Mj) ∪ D(Mk) = { } and hence | D(Mj) ∪ D(Mk) | = 0. Here, 'mk' and 'Mk' represent a minterm and maxterm respectively. We compare the circuits minimized with our proposed method with those corresponding to factored Reed-Muller (f-RM) form, factored Pseudo Kronecker Reed-Muller (f-PKRM) form, and factored Generalized Reed-Muller (f-GRM) form. We have opted for algebraic factorization of the Reed-Muller (RM) form and its different variants, using the factorization rules of [1], as it is simple and requires much less CPU execution time compared to Boolean factorization operations. This technique has enabled us to greatly reduce the literal count as well as the gate count needed for such RM realizations, which are generally prone to consuming more cells and subsequently more power consumption. However, this leads to a drawback in terms of the design-for-test attribute associated with the various RM forms. Though we still preserve the definition of those forms viz. realizing such functionality with only select types of logic gates (AND gate and XOR gate), the structural integrity of the logic levels is not preserved. This would consequently alter the testability properties of such circuits i.e. it may increase/decrease/maintain the same number of test input vectors needed for their exhaustive testability, subsequently affecting their generalized test vector computation. We do not consider the issue of design-for-testability here, but, instead focus on the power consumption of the final logic implementation, after realization with a conventional CMOS process technology (0.35 micron TSMC process). The quality of the resulting circuits evaluated on the basis of an established cost metric viz., power consumption, demonstrate average savings by 26.79% for the samples considered in this work, besides reduction in number of gates and input literals by 39.66% and 12.98% respectively, in comparison with other factored RM forms.

Keywords: Reed-Muller forms, Logic function, Hammingdistance, Algebraic factorization, Low power design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
3632 The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant

Authors: J. R. Wang, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, C. C. Liu

Abstract:

In this research, TRACE model of Chinshan BWR/4 nuclear power plant (NPP) has been developed for the simulation and analysis of ultimate response guideline (URG).The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. TRACE analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe.

Keywords: BWR, TRACE, safety analysis, URG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
3631 Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier

Authors: Montree Kumngern, Kobchai Dejhan

Abstract:

Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.

Keywords: Class-AB, dual-mode CMOS analog multiplier, CMOS analog integrated circuit, CMOS translinear integrated circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
3630 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method

Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent

Abstract:

A method of modelling topography used in the simulation of riverbeds is proposed in this paper which removes the need for datapoints and measurements of a physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method, and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.

Keywords: Bed topography, FBM, LBM, shallow water, simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 307
3629 Evaluation of Coupling Factor in RF Inductively Coupled Systems

Authors: Rômulo Volpato, Filipe Ramos, Paulo Crepaldi, Michel Santana, Tales C Pimenta

Abstract:

This work presents an approach for the measurement of mutual inductance on near field inductive coupling. The mutual inductance between inductive circuits allows the simulation of energy transfer from reader to tag, that can be used in RFID and powerless implantable devices. It also allows one to predict the maximum voltage in the tag of the radio-frequency system.

Keywords: RFID, Inductive Coupling, Energy Transfer, Implantable Device

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327