Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33117
Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector

Authors: Salma Parvin, M. A. Alim

Abstract:

The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.

Keywords: DASC, forced convection, mass flow rate, nanofluid.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1340232

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858

References:


[1] A. R. Taylor, E. P. Phelan, P. T. Otanicar, A. C. Walker, M. Nguyen, S. Trimble, P. Ravi, Int. J. Renew. Sust. Energy 3, 023104 (2011).
[2] V. Verma, L. Kundan, J. Mech. Civil Eng. 6, 29 (2013).
[3] S. Parvin, R. Nasrin, M. A. Alim, Int. J. Heat Mass Trans. 71, 386 (2014).
[4] O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Trans. 57, 582 (2013).
[5] E. Zambolin, Theoretical and experimental study of solar thermal collector systems and components, Scuola di Dottorato di Ricerca in Ingegneria Industriale, Indirizzo FisicaTecnica, 2011.
[6] A. Bejan, J. Heat Trans. 101,718 (1979).
[7] H. Khorasanizadeh, M. Nikfar, J. Amani, Eur J Mech B-Fluid 37,143 (2013).
[8] M. Shahi, A. H. Mahmoudi, A. H. Raouf, Int. Comm. Heat Mass Trans. 38, 972 (2011).
[9] M Esmaeilpour, M. Abdollahzadeh, Int. J. Therm. Sci. 52, 127 (2012).
[10] C. C. Cho, C. L. Chen, C. K. Chen, Int. J. Heat Mass Trans. 61, 749 (2012).
[11] M. Karami,M. A. Akhavan-Bahabadi, S. Delfani, M. Raisee, Renew. Sust. Energy Rev. 52, 793 (2015).
[12] B. Tahereh, Gorji, A. A. Ranjbar, Solar Energy122, 314 (2015).
[13] U. Diego-Ayala, J. G. Carrillo, Renew. Energy 96, 756 (2016).
[14] E. B. Ogut, Int. J. Therm. Sci. 48, 2063 (2009).
[15] B. C. Pak, Y Cho, Experi. Heat Trans. 11, 151 (1998).
[16] J. C. Maxwell-Garnett, Philos. Trans. Roy. Soc. A 203, 385 (1904).
[17] J. N. Reddy, D. K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Inc., Boca Raton, Florida, 1994.