Search results for: Physics experiment materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2806

Search results for: Physics experiment materials

616 Thermal and Mechanical Buckling of Short and Long Functionally Graded Cylindrical Shells Using First Order Shear Deformation Theory

Authors: O. Miraliyari, M.M. Najafizadeh, A.R. Rahmani, A. Momeni Hezaveh

Abstract:

This paper presents the buckling analysis of short and long functionally graded cylindrical shells under thermal and mechanical loads. The shell properties are assumed to vary continuously from the inner surface to the outer surface of the shell. The equilibrium and stability equations are derived using the total potential energy equations, Euler equations and first order shear deformation theory assumptions. The resulting equations are solved for simply supported boundary conditions. The critical temperature and pressure loads are calculated for both short and long cylindrical shells. Comparison studies show the effects of functionally graded index, loading type and shell geometry on critical buckling loads of short and long functionally graded cylindrical shells.

Keywords: Buckling, Functionally graded materials, Short and long cylindrical shell, Thermal and mechanical loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
615 Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials

Authors: Aman Patidar, Dipankar Sarkar, Manish Pal

Abstract:

Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.

Keywords: HMA, nanosilica, NSMB, temperature, TSR, UMB, WMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
614 Effects of Stiffness on Endothelial Cells Behavior

Authors: Forough Ataollahi, Belinda Pingguan-Murphy, Wan Abu Bakar Wan Abas, Noor Azuan Abu Osman

Abstract:

Endothelium proliferation is an important process in cardiovascular homeostasis and can be regulated by extracellular environment, as cells can actively sense mechanical environment. In this study, we evaluated endothelial cell proliferation on PDMS/alumina (Al2O3) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 5% and 10% Al2O3 at curing temperature 50˚C for 4h and then characterized by mechanical, structural and morphological analyses. Higher stiffness was found in the composites compared to the pure PDMS substrate. Cell proliferation of the cultured bovine aortic endothelial cells on substrate materials were evaluated via Resazurin assay and 1, 1’-Dioctadecyl-1, 3, 3, 3’, 3’-Tetramethylindocarbocyanine Perchlorate-Acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The results revealed that stiffer substrates promote more endothelial cells proliferation to the less stiff substrates. Therefore, this study firmly hypothesizes that the stiffness elevates endothelial cells proliferation.

Keywords: Bovine aortic endothelial cells, extra cellular matrix, proliferation, stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
613 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite

Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan

Abstract:

Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.

Keywords: Natural fibers, polymer matrix composites, jute, compression molding, biodegradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
612 Strengthen of Cold-Formed Steel Column with Ferrocement Jacket: Push out Tests

Authors: Khaled Alenezi, Talal Alhajri, M. M. Tahir, Mohamed Ragaee K. Badr, S. O. Bamaga

Abstract:

The population growth in the world requires an increase in demand of residential and housing construction. Using lightweight construction materials such as cold formed steel sections and ferrocement could be an alternate solution to foster the construction industry. In this study, a new composite column is introduced. It consists of cold formed steel section and ferrocement jacket. The ferrocement jacket was constructed using self-compacting mortar with two wire steel mesh of 550 MPa yield strength. Experimental push out tests was conducted to investigate the strength capacities and behavior of proposed shear connectors namely, bolt, bar-angle and self-drilling screw shear connectors. It was found that bolt connector showed the best behavior followed by bar-angle. Also, it was concluded that the ferrocement could be used to strength and improve the behavior of cold formed steel column.

Keywords: Cold formed steel, composite column, push out test, shear connector, ferrocement, strengthen method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3290
611 Intensive Biological Control in Spanish Greenhouses: Problems of the Success

Authors: Carolina Sanchez, Juan R. Gallego, Manuel Gamez, Tomas Cabello

Abstract:

Currently, biological control programs in greenhouse crops involve the use, at the same time, several natural enemies during the crop cycle. Also, large number of plant species grown in greenhouses, among them, the used cultivars are also wide. However, the cultivar effects on entomophagous species efficacy (predators and parasitoids) have been scarcely studied. A new method had been developed, using the factitious prey or host Ephestia kuehniella. It allow us to evaluate, under greenhouse or controlled conditions (semi-field), the cultivar effects on the entomophagous species effectiveness. The work was carried out in greenhouse tomato crop. It has been found the biological and ecological activities of predatory species (Nesidiocoris tenuis) and egg-parasitoid (Trichogramma achaeae) can be well represented with the use of the factitious prey or host; being better in the former than the latter. The data found in the trial are shown and discussed. The developed method could be applied to evaluate new plant materials before making available to farmers as commercial varieties, at low costs and easy use.

Keywords: Cultivar Effects, Efficiency, Predators, Parasitoids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
610 Using Metacognitive Strategies in Reading Comprehension by EFL Students

Authors: Simin Sadeghi-Saeb

Abstract:

Metacognitive strategies consistently play important roles in reading comprehension. The metacognitive strategies involve the active monitoring and consequent regulation and orchestration of the cognitive processes in relation to the cognitive objects or data on which they bear. In this paper, the effect of instruction in using metacognitive strategies on reading academic materials, type of metacognitive strategies were mostly used by college university students before and after the instruction and the level they use those strategies before and after the instruction were studied. For these aims, 50 female college students were chosen. Then, they were divided randomly into two groups, experimental and control groups. At first session, students in both groups took the standard TOFEL exam. After the pre-test had been administered, the instruction began. After treatment, a post-test was taken. It is useful to state that after pre-test and post-test the same questionnaire was handed to the students of experimental group. The results of this research show that the instruction of metacognitive strategies has positive effect on the students' scores in reading comprehension tests. Furthermore, it showed that before and after the instruction, the students' usage of metacognitive strategies changed. Also, it demonstrated that the instruction affected the students' level of metacognitive strategies' usage.

Keywords: EFL students, English reading comprehension, instruction, metacognitive strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
609 Effect of Friction Models on Stress Distribution of Sheet Materials during V-Bending Process

Authors: Maziar Ramezani, Zaidi Mohd Ripin

Abstract:

In a metal forming process, the friction between the material and the tools influences the process by modifying the stress distribution of the workpiece. This frictional behaviour is often taken into account by using a constant coefficient of friction in the finite element simulations of sheet metal forming processes. However, friction coefficient varies in time and space with many parameters. The Stribeck friction model is investigated in this study to predict springback behaviour of AA6061-T4 sheets during V-bending process. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The plane-strain bending process is simulated in ABAQUS/Standard. We compared the computed punch load-stroke curves and springback related to the constant coefficient of friction with the defined friction model. The results clearly showed that the new friction model provides better agreement between experiments and results of numerical simulations. The influence of friction models on stress distribution in the workpiece is also studied numerically

Keywords: Friction model, Stress distribution, V-bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
608 The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce ‘Dublin’

Authors: Wael M. Semida, P. Hadley, W. Sobeih, N. A. El-Sawah, M. A. S. Barakat

Abstract:

Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic films and destructively harvested 4, 5, and 6 weeks after transplanting. Thermic films can increase night temperatures up to 2 ⁰C reducing the wide fluctuation in greenhouse temperature during winter compared to the standard commercial film and consequently increased the yield (leaf number, fresh weight, and dry weight) of lettuce plants. Lettuce plants grown under Clear film respond to cold stress by the accumulation of secondary products (phenolics, and flavonoids).

Keywords: Photoselective plastic films, thermic films, secondary metabolites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
607 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
606 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber

Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay

Abstract:

Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.

Keywords: Asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanized.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
605 LEED Empirical Evidence in Northern and Southern Europe

Authors: Svetlana Pushkar

Abstract:

The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe.

Keywords: Green building, Europe, LEED, regional priority points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
604 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Authors: Supriyono, Sumardiyono, Rendy J. Pramono

Abstract:

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
603 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Authors: Supriyono, Sumardiyono, Rendy J. Pramono

Abstract:

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
602 Carbon Disulfide Production via Hydrogen Sulfide Methane Reformation

Authors: H. Hosseini, M. Javadi, M. Moghiman, M. H. Ghodsi Rad

Abstract:

Carbon disulfide is widely used for the production of viscose rayon, rubber, and other organic materials and it is a feedstock for the synthesis of sulfuric acid. The objective of this paper is to analyze possibilities for efficient production of CS2 from sour natural gas reformation (H2SMR) (2H2S+CH4 =CS2 +4H2) . Also, the effect of H2S to CH4 feed ratio and reaction temperature on carbon disulfide production is investigated numerically in a reforming reactor. The chemical reaction model is based on an assumed Probability Density Function (PDF) parameterized by the mean and variance of mixture fraction and β-PDF shape. The results show that the major factors influencing CS2 production are reactor temperature. The yield of carbon disulfide increases with increasing H2S to CH4 feed gas ratio (H2S/CH4≤4). Also the yield of C(s) increases with increasing temperature until the temperature reaches to 1000°K, and then due to increase of CS2 production and consumption of C(s), yield of C(s) drops with further increase in the temperature. The predicted CH4 and H2S conversion and yield of carbon disulfide are in good agreement with result of Huang and TRaissi.

Keywords: Carbon disulfide, sour natural gas, H2SMR, probability density function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5255
601 Use of Natural Fibers in Landfill Leachate Treatment

Authors: J. F. Marina Araujo, F. Marcus Vinicius Araujo, R. Daniella Mulinari

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment.In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber.These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale.In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%.The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: Landfill leachate, chemical treatment, natural Fibers, advanced oxidation processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
600 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
599 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
598 Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids

Authors: Chih-Jer Lin, Chun-Ying Lee, Chiang-Ho Cheng, Geng-Fung Chen

Abstract:

This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.

Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, fuzzy control, Real-time control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3226
597 Garden Culture in Islamic Civilization: A Glance at the Birth, Development and Current Situation

Authors: Parisa Göker

Abstract:

With the birth of Islam, the definitions of paradise in Quran have spread across three continents since 7th century, showing itself in the palace gardens as a reflection of Islamic Culture. The design characteristics of Islamic gardens come forth with the influence of religious beliefs, as well as taking its form as per the cultural, climatic and soil characteristics of its geography, and showing its difference. It is possible to see these differences from the garden examples that survived to present time from the civilizations in the lands of Islamic proliferation. The main material of this research is the Islamic gardens in Iran and Spain. Field study was carried out in Alhambra Palace in Spain, Granada and Shah Goli garden in Iran, Tabriz. In this study, the birth of Islamic gardens, spatial perception of paradise, design principles, spatial structure, along with the structural/plantation materials used are examined. Also the characteristics and differentiation of the gardens examined in different cultures and geographies have been revealed. In the conclusion section, Iran and Spain Islamic garden samples were evaluated and their properties were determined.

Keywords: Islamic civilization, Islamic architecture, cultural landscape, Islamic garden.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
596 Anisotropic Shear Strength of Sand Containing Plastic Fine Materials

Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz

Abstract:

Anisotropy is one of the major aspects that affect soil behavior, and extensive efforts have investigated its effect on the mechanical properties of soil. However, very little attention has been given to the combined effect of anisotropy and fine contents. Therefore, in this paper, the anisotropic strength of sand containing different fine content (F) of 5%, 10%, 15%, and 20%, was investigated using hollow cylinder tests under different principal stress directions of α = 0° and α = 90°. For a given principal stress direction (α), it was found that increasing fine content resulted in decreasing deviator stress (q). Moreover, results revealed that all fine contents showed anisotropic strength where there is a clear difference between the strength under 0° and the strength under 90°. This anisotropy was greatest under F = 5% while it decreased with increasing fine contents, particularly at F = 10%. Mixtures with low fine content show low contractive behavior and tended to show more dilation. Moreover, all sand-clay mixtures exhibited less dilation and more compression at α = 90° compared with that at α = 0°.

Keywords: Anisotropy, principal stress direction, fine content, hollow cylinder sample.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
595 Mecano-Reliability Approach Applied to a Water Storage Tank Placed on Ground

Authors: Amar Aliche, Hocine Hammoum, Karima Bouzelha, Arezki Ben Abderrahmane

Abstract:

Traditionally, the dimensioning of storage tanks is conducted with a deterministic approach based on partial coefficients of safety. These coefficients are applied to take into account the uncertainties related to hazards on properties of materials used and applied loads. However, the use of these safety factors in the design process does not assure an optimal and reliable solution and can sometimes lead to a lack of robustness of the structure. The reliability theory based on a probabilistic formulation of constructions safety can respond in an adapted manner. It allows constructing a modelling in which uncertain data are represented by random variables, and therefore allows a better appreciation of safety margins with confidence indicators. The work presented in this paper consists of a mecano-reliability analysis of a concrete storage tank placed on ground. The classical method of Monte Carlo simulation is used to evaluate the failure probability of concrete tank by considering the seismic acceleration as random variable.

Keywords: Reliability approach, storage tanks, Monte Carlo simulation, seismic acceleration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
594 Development of New Control Techniques for Vibration Isolation of Structures using Smart Materials

Authors: Shubha P Bhat, Krishnamurthy, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the effects of the restoring force device on the response of a space frame structure resting on sliding type of bearing with a restoring force device is studied. The NS component of the El - Centro earthquake and harmonic ground acceleration is considered for earthquake excitation. The structure is modeled by considering six-degrees of freedom (three translations and three rotations) at each node. The sliding support is modeled as a fictitious spring with two horizontal degrees of freedom. The response quantities considered for the study are the top floor acceleration, base shear, bending moment and base displacement. It is concluded from the study that the displacement of the structure reduces by the use of the restoring force device. Also, the peak values of acceleration, bending moment and base shear also decreases. The simulation results show the effectiveness of the developed and proposed method.

Keywords: DOF, Space structures, Acceleration, Excitation, Smart structure, Vibration, Isolation, Earthquakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
593 Investigating the Geopolymerization Process of Aluminosilicates and Its Impact on the Compressive Strength of the Produced Geopolymers

Authors: Heba Z. Fouad, Tarek M. Madkour, Safwan A. Khedr

Abstract:

This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which correspond to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.

Keywords: alcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382
592 Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, characterisations, contact angle measurement, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
591 Pre-Analysis of Printed Circuit Boards Based On Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show, that a higher contrast is achieved in the near infrared compared to ultraviolett and visible light.

Keywords: Electronic Waste, Recycling, Multispectral Imaging, Printed Circuit Boards, Rare-Earth Elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
590 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes

Abstract:

In this paper the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
589 Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application

Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman

Abstract:

Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.

Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4774
588 Effects of Paste Content on Flow Characteristics of SCC Containing Local Natural Pozzolan

Authors: Muhammad Nouman Haral, Abdulaziz I. Al-Negheimesh, Galal Fares, Mohammad Iqbal Khan, Abdulrahman M. Alhozaimy

Abstract:

Natural pozzolan (NP) is one of the potential prehistoric alternative binders in the construction industry. It has been investigated as cement replacement in ordinary concrete by several researchers for many purposes. Various supplementary cementitious materials (SCMs) such as fly ash, limestone dust and silica fume are widely used in the production of SCC; however, limited studies to address the effect of NP on the properties of SCC are documented. The current research is composed of different SCC paste and concrete mixtures containing different replacement levels of local NP as an alternative SCM. The effect of volume of paste containing different amounts of local NP related to W/B ratio and cement content on SCC fresh properties was assessed. The variations in the fresh properties of SCC paste and concrete represented by slump flow (flowability) and the flow rate were determined and discussed. The results indicated that the flow properties of SCC paste and concrete mixtures, at their optimized superplasticizer dosages, were affected by the binder content of local NP and the total volume fraction of SCC paste.

Keywords: Binder, fresh properties, natural pozzolan, paste, SCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2783
587 Methodology of Islamic Economics: Scope and Prospects

Authors: Ahmad Abdulkadir Ibrahim

Abstract:

Observation of the methodology of Islamic economics laid down for the methods and instruments of analysis and even some of its basic assumptions in the modern world; is a matter that is of paramount importance. There is a need to examine the implications of different suggested definitions of Islamic economics, exploring its scope and attempting to outline its methodology. This paper attempts to deal with the definition of Islamic economics, its methodology, and its scope. It will outline the main methodological problem by addressing the question of whether Islamic economics calls for a methodology of its own or as an expanded economics. It also aims at drawing the attention of economists in the modern world to the obligation and consideration of the methodology of Islamic economics. The methodology adopted in this research is library research through the consultation of relevant literature, which focuses on the thematic study of the subject matter. This is followed by an analysis and discussion of the contents of the materials used. It is concluded that there is a certain degree of inconsistency in the way assumptions are incorporated that perhaps are alien to Islamic economics. The paper also observed that there is a difference between Islamic economists and other (conventional) economists in the profession. An important conclusion is that Islamic economists need to rethink what economics is all about and whether we really have to create an alternative to economics in the form of Islamic economics or simply have an Islamic perspective of the same discipline.

Keywords: Islamic economics, conventional economics, Muslim economists, modern economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430